Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Spot defects detection in cDNA microarray images

Larese, Monica GracielaIcon ; Granitto, Pablo MiguelIcon ; Gomez, Juan Carlos
Fecha de publicación: 08/2011
Editorial: Springer
Revista: Pattern Analysis And Applications
ISSN: 1433-7541
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática; Otras Ciencias de la Computación e Información

Resumen

Bad quality spots should be filtered out at early steps in microarray analysis to avoid noisy data. In this paper we implement quality control of individual spots from real microarray images. First of all, we consider the binary classification problem of detecting bad quality spots. We propose the use of ensemble algorithms to perform detection and obtain improved accuracies over previous studies in the literature. Next, we analyze the untackled problem of identifying specific spot defects. One spot may have several faults simultaneously (or none of them) yielding a multi-label classification problem. We propose several extra features in addition to those used for binary classification, and we use three different methods to perform the classification task: five independent binary classifiers, the recent Convex Multi-task Feature Learning (CMFL) algorithm and Convex Multi-task Independent Learning (CMIL). We analyze the Hamming loss and areas under the receiver operating characteristic (ROC) curves to quantify the accuracies of the methods. We find that the three strategies achieve similar results leading to a successful identification of particular defects. Also, using a Random forest-based analysis we show that the newly introduced features are highly relevant for this task.
Palabras clave: MICROARRAY IMAGES , QUALITY CONTROL , DEFECTS IDENTIFICATION , ENSEMBLE CLASSIFIERS , CONVEX MULTI-TASK LEARNING , PATTERN RECOGNITION
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 262.6Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/113381
DOI: http://dx.doi.org/10.1007/s10044-011-0234-x
URL: https://link.springer.com/article/10.1007/s10044-011-0234-x
Colecciones
Articulos(CIFASIS)
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Citación
Larese, Monica Graciela; Granitto, Pablo Miguel; Gomez, Juan Carlos; Spot defects detection in cDNA microarray images; Springer; Pattern Analysis And Applications; 16; 3; 8-2011; 307-319
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES