Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Eigenvalues of Hecke operators on Hilbert modular groups

Bruggeman, Roelof W.; Miatello, Roberto JorgeIcon
Fecha de publicación: 12/2013
Editorial: International Press Boston
Revista: Asian Journal of Mathematics
ISSN: 1093-6106
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

Abstract. Let F be a totally real field, let I be a nonzero ideal of the ring of integers OF Q of F, let 0(I) be the congruence subgroup of Hecke type of G = dj =1 SL2(R) embedded diagonally in G, and let be a character of 0(I) of the form ac b d = (d), where d 7! (d) is a character of OF modulo I. For a finite subset P of prime ideals p not dividing I, we consider the ring HI , generated by the Hecke operators T(p2), p 2 P (see x3.2) acting on (; )- automorphic forms on G. Given the cuspidal space L2;cusp 0(I)nG; , we let V$ run through an orthogonal system of irreducible G-invariant subspaces so that each V$ is invariant under HI . For each 1 j d, let $ = ($; j) be the vector formed by the eigenvalues of the Casimir operators of the d factors of G on V$, and for each p 2 P, we take $;p 0 so that 2 $;p N(p) is the eigenvalue on V$ of the Hecke operator T(p2) For each family of expanding boxes t 7! t , as in (3) in Rd, and fixed an interval Jp in [0;1), for each p 2 P, we consider the counting function N( t; (Jp)p2P) := X $; $2 t : $;p2Jp ;8p2P jcr($)j2 : Here cr($) denotes the normalized Fourier coecient of order r at 1 for the elements of V$, with r 2 O0 F r pO0 F for every p 2 P. In the main result in this paper, Theorem 1.1, we give, under some mild conditions on the t , the asymptotic distribution of the function N( t; (Jp)p2P), as t ! 1. We show that at the finite places outside I the Hecke eigenvalues are equidistributed with respect to the Sato-Tate measure, whereas at the archimedean places the eigenvalues $ are equidistributed with respect to the Plancherel measure. As a consequence, if we fix an infinite place l and we prescribe $; j 2 j for all infinite places j , l and$;p 2 Jp for all finite places p in P (for fixed intervals j and Jp) and then allow j$;lj to grow to 1, then there are infinitely many such $, and their positive density is as described in Theorem 1.1.
Palabras clave: Automorphic Representations , Hecke Operators , Hilbert Modular Group , Plancherel Measure
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 243.3Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/11335
URL: http://intlpress.com/site/pub/pages/journals/items/ajm/content/vols/0017/0004/a0
DOI: http://dx.doi.org/10.4310/AJM.2013.v17.n4.a10
URL: https://arxiv.org/abs/0912.1692
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Bruggeman, Roelof W.; Miatello, Roberto Jorge; Eigenvalues of Hecke operators on Hilbert modular groups; International Press Boston; Asian Journal of Mathematics; 17; 4; 12-2013; 729-757
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES