Mostrar el registro sencillo del ítem

dc.contributor.author
Gimenez, Nardo Ariel  
dc.contributor.author
Heintz, Joos Ulrich  
dc.contributor.author
Matera, Guillermo  
dc.contributor.author
Solernó, Pablo Luis  
dc.date.available
2020-09-04T20:58:52Z  
dc.date.issued
2011-04  
dc.identifier.citation
Gimenez, Nardo Ariel; Heintz, Joos Ulrich; Matera, Guillermo; Solernó, Pablo Luis; Lower complexity bounds for interpolation algorithms; Academic Press Inc Elsevier Science; Journal Of Complexity; 27; 2; 4-2011; 151-187  
dc.identifier.issn
0885-064X  
dc.identifier.uri
http://hdl.handle.net/11336/113310  
dc.description.abstract
We introduce and discuss a new computational model for the HermiteLagrange interpolation with nonlinear classes of polynomial interpolants. We distinguish between an interpolation problem and an algorithm that solves it. Our model includes also coalescence phenomena and captures a large variety of known HermiteLagrange interpolation problems and algorithms. Like in traditional HermiteLagrange interpolation, our model is based on the execution of arithmetic operations (including divisions) in the field where the data (nodes and values) are interpreted and arithmetic operations are counted at unit cost. This leads us to a new view of rational functions and maps defined on arbitrary constructible subsets of complex affine spaces. For this purpose we have to develop new tools in algebraic geometry which themselves are mainly based on Zariski's Main Theorem and the theory of places (or equivalently: valuations). We finish this paper by exhibiting two examples of Lagrange interpolation problems with nonlinear classes of interpolants, which do not admit efficient interpolation algorithms (one of these interpolation problems requires even an exponential quantity of arithmetic operations in terms of the number of the given nodes in order to represent some of the interpolants). In other words, classic Lagrange interpolation algorithms are asymptotically optimal for the solution of these selected interpolation problems and nothing is gained by allowing interpolation algorithms and classes of interpolants to be nonlinear. We show also that classic Lagrange interpolation algorithms are almost optimal for generic nodes and values. This generic data cannot be substantially compressed by using nonlinear techniques. We finish this paper highlighting the close connection of our complexity results in HermiteLagrange interpolation with a modern trend in software engineering: architecture tradeoff analysis methods (ATAM).  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Academic Press Inc Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
HERMITE--LAGRANGE INTERPOLATION  
dc.subject
INTERPOLATION PROBLEM  
dc.subject
INTERPOLATION ALGORITHM  
dc.subject
COMPUTATIONAL COMPLEXITY  
dc.subject
LOWER COMPLEXITY BOUNDS  
dc.subject
CONSTRUCTIBLE MAP  
dc.subject
RATIONAL MAP  
dc.subject
TOPOLOGICALLY ROBUST MAP  
dc.subject
GEOMETRICALLY ROBUST MAP  
dc.subject
HERMITE--LAGRANGE INTERPOLATION  
dc.subject
INTERPOLATION PROBLEM  
dc.subject
INTERPOLATION ALGORITHM  
dc.subject
COMPUTATIONAL COMPLEXITY  
dc.subject
LOWER COMPLEXITY BOUNDS  
dc.subject
CONSTRUCTIBLE MAP  
dc.subject
RATIONAL MAP  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Lower complexity bounds for interpolation algorithms  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-09-03T16:54:58Z  
dc.journal.volume
27  
dc.journal.number
2  
dc.journal.pagination
151-187  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Gimenez, Nardo Ariel. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina  
dc.description.fil
Fil: Heintz, Joos Ulrich. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina  
dc.description.fil
Fil: Matera, Guillermo. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Solernó, Pablo Luis. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina  
dc.journal.title
Journal Of Complexity  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0885064X10000956  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.jco.2010.10.003