Mostrar el registro sencillo del ítem

dc.contributor.author
Univaso, Pedro Nicolas  
dc.contributor.author
Ale, Juan Maria  
dc.contributor.author
Gurlekian, Jorge Alberto  
dc.date.available
2020-09-04T19:09:19Z  
dc.date.issued
2015-04-13  
dc.identifier.citation
Univaso, Pedro Nicolas; Ale, Juan Maria; Gurlekian, Jorge Alberto; Data mining applied to forensic speaker identification; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 13; 4; 13-4-2015; 1098-1111  
dc.identifier.issn
1548-0992  
dc.identifier.uri
http://hdl.handle.net/11336/113286  
dc.description.abstract
In this paper we analyze the advantages of using data mining techniques and tools for data fusion in forensic speaker recognition. Segmental and suprasegmental features were employed in 28 different classifiers, in order to compare their performances. The selected classifiers have different learning techniques: lazy or instance-based, eager and ensemble. Two approaches were employed on the classification task: the use of all features and the use of a feature subset, selected with a gain ratio methodology. The best performances, with all features, were obtained by three classifiers: Logistic Model Tree (eager), LogitBoost (ensemble) and Multilayer Perceptron (eager). Support Vector Machine (eager) proved to be a good classifier if a Pearson VII function-based universal kernel was used. When low dimensional features were selected, ensemble classifiers exceeded the performance of all others classifiers. Segmental and tone features demonstrated the best speaker discrimination capabilities, followed by duration and quality voice features. Evaluation was performed on Argentine-Spanish voice samples from the Speech_Dat database recorded on a fixed telephone environment. Different recording sessions and channels for the test segments were added and the Z-norm procedure was applied for channel compensation.  
dc.format
application/pdf  
dc.language.iso
spa  
dc.publisher
Institute of Electrical and Electronics Engineers  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CLASSIFIERS  
dc.subject
DATA FUSION  
dc.subject
DATA MINING  
dc.subject
ENSEMBLE METHODS  
dc.subject
SPEAKER RECOGNITION  
dc.subject.classification
Otras Ciencias de la Computación e Información  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Data mining applied to forensic speaker identification  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-08-04T15:55:56Z  
dc.journal.volume
13  
dc.journal.number
4  
dc.journal.pagination
1098-1111  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Albuquerque  
dc.description.fil
Fil: Univaso, Pedro Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; Argentina  
dc.description.fil
Fil: Ale, Juan Maria. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina  
dc.description.fil
Fil: Gurlekian, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; Argentina  
dc.journal.title
IEEE Latin America Transactions  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/7106363  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/TLA.2015.7106363