Mostrar el registro sencillo del ítem

dc.contributor.author
Adrover, Jorge Gabriel  
dc.contributor.author
Donato, Stella Maris  
dc.date.available
2020-09-03T20:42:47Z  
dc.date.issued
2015-01  
dc.identifier.citation
Adrover, Jorge Gabriel; Donato, Stella Maris; A robust predictive approach for canonical correlation analysis; Elsevier Inc; Journal Of Multivariate Analysis; 133; 1-2015; 356-376  
dc.identifier.issn
0047-259X  
dc.identifier.uri
http://hdl.handle.net/11336/113184  
dc.description.abstract
Canonical correlation analysis (CCA) is a dimension-reduction technique in which two random vectors from high dimensional spaces are reduced to a new pair of low dimensional vectors after applying linear transformations to each of them, retaining as much information as possible. The components of the transformed vectors are called canonical variables. One seeks linear combinations of the original vectors maximizing the correlation subject to the constraint that they are to be uncorrelated with the previous canonical variables within each vector. By these means one actually gets two transformed random vectors of lower dimension whose expected square distance has been minimized subject to have uncorrelated components of unit variance within each vector. Since the closeness between the two transformed vectors is evaluated through a highly sensitive measure to outlying observations as the mean square loss, the linear transformations we are seeking are also affected. In this paper we use a robust univariate dispersion measure (like an M-scale) based on the distance of the transformed vectors to derive robust S-estimators for canonical vectors and correlations. An iterative algorithm is performed by exploiting the existence of efficient algorithms for S-estimation in the context of Principal Component Analysis. Some convergence properties are analyzed for the iterative algorithm. A simulation study is conducted to compare the new procedure with some other robust competitors available in the literature, showing a remarkable performance. We also prove that the proposal is Fisher consistent.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Inc  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CANONICAL CORRELATION ANALYSIS  
dc.subject
M-SCALES  
dc.subject
MEAN RELATIVE PREDICTION ERROR  
dc.subject
S-ESTIMATION  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A robust predictive approach for canonical correlation analysis  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-05-11T16:35:51Z  
dc.journal.volume
133  
dc.journal.pagination
356-376  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Ámsterdam  
dc.description.fil
Fil: Adrover, Jorge Gabriel. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina  
dc.description.fil
Fil: Donato, Stella Maris. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina  
dc.journal.title
Journal Of Multivariate Analysis  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0047259X14002048  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.jmva.2014.09.007