Mostrar el registro sencillo del ítem

dc.contributor.author
Yavari, M.  
dc.contributor.author
Ebadi, Firouzeh  
dc.contributor.author
Meloni, Simone  
dc.contributor.author
Wang, Zishuai  
dc.contributor.author
Yang, Terry Chien-Jen  
dc.contributor.author
Sun, Shijing  
dc.contributor.author
Schwartz, Heidi  
dc.contributor.author
Wang, Zaiwei  
dc.contributor.author
Niesen, Bjoern  
dc.contributor.author
Durantini, Javier Esteban  
dc.contributor.author
Rieder, Philipp  
dc.contributor.author
Tvingstedt, Kristofer  
dc.contributor.author
Buonassisi, Tonio  
dc.contributor.author
Choy, Wallace C.H.  
dc.contributor.author
Filippetti, Alessio  
dc.contributor.author
Dittrich, Thomas  
dc.contributor.author
Olthof, Selina  
dc.contributor.author
Correa Baena, Juan Pablo  
dc.contributor.author
Tress, Wolfgang  
dc.date.available
2020-09-03T19:11:35Z  
dc.date.issued
2019-03  
dc.identifier.citation
Yavari, M.; Ebadi, Firouzeh; Meloni, Simone; Wang, Zishuai; Yang, Terry Chien-Jen; et al.; How far does the defect tolerance of lead-halide perovskites range? The example of Bi impurities introducing efficient recombination centers; Royal Society of Chemistry; Journal of Materials Chemistry A; 7; 41; 3-2019; 23838-23853  
dc.identifier.issn
2050-7488  
dc.identifier.uri
http://hdl.handle.net/11336/113162  
dc.description.abstract
One of the key properties of lead-halide perovskites employed in solar cells is the defect tolerance of the materials, in particular regarding intrinsic point defects, which mainly form shallow traps. Considering that high luminescence yields and photovoltaic performance are obtained by simple solution processing from commercial chemicals, it is commonly anticipated that the defect tolerance-at least to a considerable degree-extends to grain boundaries and extrinsic defects, i.e. impurities, as well. However, the effect of impurities has hardly been investigated. Here, we intentionally introduce small quantities of bismuth (10 ppm to 2%) in solution to be incorporated in the perovskite films based on mixed cation mixed anion compositions. We observe that Bi impurities in the %-regime reduce charge carrier collection efficiency and, more importantly, that the open-circuit voltage decreases systematically with impurity concentration even in the ppm regime. This strong defect intolerance against Bi impurities comes along with reduced electroluminescence yields and charge carrier lifetimes obtained from transient photoluminescence experiments. Calculations based on molecular dynamics and density functional theory predict delocalized (≈0.16 eV) and localized deep (≈0.51 eV) trap states dependent on the structural arrangement of the surrounding atoms. Structural characterization supports the idea of Bi being present as a homogeneously spread point defect, which substitutes the Pb2+ by Bi3+ as seen from XPS and a reduction of the lattice parameter in XRD. Sensitive measurements of the photocurrent (by FTPS) and surface photovoltage (SPV) confirm the presence of tail states. Photoelectron spectroscopy measurements show evidence of a deep state. These results are consistent with the common idea of shallow traps being responsible for the reduced charge collection efficiency and the decreased fill factor, and deeper traps causing a substantial reduction of the open-circuit voltage. As Bi is only one potential impurity in the precursor salts used in perovskite solar cell fabrication, our findings open-up a research direction focusing on identifying and eliminating impurities that act as recombination centers-a topic that has so far not been fully considered in device optimization studies.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Royal Society of Chemistry  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
PEROVSKITE  
dc.subject
IMPURITIES  
dc.subject
BISMUTH  
dc.subject
SOLAR CELLS  
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
How far does the defect tolerance of lead-halide perovskites range? The example of Bi impurities introducing efficient recombination centers  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-08-20T20:28:55Z  
dc.identifier.eissn
2050-7496  
dc.journal.volume
7  
dc.journal.number
41  
dc.journal.pagination
23838-23853  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Yavari, M.. École Polytechnique Fédérale de Lausanne; Suiza  
dc.description.fil
Fil: Ebadi, Firouzeh. École Polytechnique Fédérale de Lausanne; Suiza  
dc.description.fil
Fil: Meloni, Simone. Università di Roma; Italia  
dc.description.fil
Fil: Wang, Zishuai. École Polytechnique Fédérale de Lausanne; Suiza  
dc.description.fil
Fil: Yang, Terry Chien-Jen. École Polytechnique Fédérale de Lausanne; Suiza  
dc.description.fil
Fil: Sun, Shijing. Massachusetts Institute Of Technology; Estados Unidos  
dc.description.fil
Fil: Schwartz, Heidi. University Of Cologne; Alemania  
dc.description.fil
Fil: Wang, Zaiwei. École Polytechnique Fédérale de Lausanne; Suiza  
dc.description.fil
Fil: Niesen, Bjoern. École Polytechnique Fédérale de Lausanne; Suiza  
dc.description.fil
Fil: Durantini, Javier Esteban. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; Argentina  
dc.description.fil
Fil: Rieder, Philipp. Julius Maximilian University Of Würzburg; Alemania  
dc.description.fil
Fil: Tvingstedt, Kristofer. Julius Maximilian University Of Würzburg; Alemania  
dc.description.fil
Fil: Buonassisi, Tonio. Massachusetts Institute Of Technology; Estados Unidos  
dc.description.fil
Fil: Choy, Wallace C.H.. The University Of Hong Kong; Hong Kong  
dc.description.fil
Fil: Filippetti, Alessio. Università Di Cagliari; Italia  
dc.description.fil
Fil: Dittrich, Thomas. Helmholtz Center Berlin For Materials And Energy; Alemania  
dc.description.fil
Fil: Olthof, Selina. University Of Cologne; Alemania  
dc.description.fil
Fil: Correa Baena, Juan Pablo. Massachusetts Institute Of Technology; Estados Unidos  
dc.description.fil
Fil: Tress, Wolfgang. École Polytechnique Fédérale de Lausanne; Suiza  
dc.journal.title
Journal of Materials Chemistry A  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://pubs.rsc.org/en/Content/ArticleLanding/2019/TA/C9TA01744E  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1039/C9TA01744E