Artículo
Bayesian optimization of crystallization processes to guarantee end-use product properties
Fecha de publicación:
01/04/2020
Editorial:
Universidad Nacional del Sur
Revista:
Latin American Applied Research
ISSN:
0327-0793
e-ISSN:
1851-8796
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
For pharmaceutical solid products, the issue of reproducibly obtaining their desired end-use properties depending on crystal size and form is the main problem to be addressed and solved in process development. Lacking a reliable first-principles model of a crystallization process, a Bayesian optimization algorithm is proposed. On this basis, a short sequence of experimental runs for pinpointing operating conditions that maximize the probability of successfully complying with end-use product properties is defined. Bayesian optimization can take advantage of the full information provided by the sequence of experiments made using a probabilistic model of the probability of success based on a one-class classification method. The proposed algorithm's performance is tested in silico using the crystallization and formulation of an API product where success is about fulfilling a dissolution profile as required by the FDA. Results obtained demonstrate that the sequence of generated experiments allows pinpointing operating conditions for reproducible quality.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INGAR)
Articulos de INST.DE DESARROLLO Y DISEÑO (I)
Articulos de INST.DE DESARROLLO Y DISEÑO (I)
Citación
Luna, Martín Francisco; Martínez, Ernesto Carlos; Bayesian optimization of crystallization processes to guarantee end-use product properties; Universidad Nacional del Sur; Latin American Applied Research; 50; 2; 1-4-2020; 109-114
Compartir