Mostrar el registro sencillo del ítem

dc.contributor.author
Reynisson, Birkir  
dc.contributor.author
Barra, Carolina  
dc.contributor.author
Kaabinejadian, Saghar  
dc.contributor.author
Hildebrand, William H.  
dc.contributor.author
Peters, Bjoern  
dc.contributor.author
Nielsen, Morten  
dc.date.available
2020-08-28T18:02:50Z  
dc.date.issued
2020-06  
dc.identifier.citation
Reynisson, Birkir; Barra, Carolina; Kaabinejadian, Saghar; Hildebrand, William H.; Peters, Bjoern; et al.; Improved Prediction of MHC II Antigen Presentation through Integration and Motif Deconvolution of Mass Spectrometry MHC Eluted Ligand Data; American Chemical Society; Journal of Proteome Research; 19; 6; 6-2020; 2304-2315  
dc.identifier.issn
1535-3893  
dc.identifier.uri
http://hdl.handle.net/11336/112657  
dc.description.abstract
Major histocompatibility complex II (MHC II) molecules play a vital role in the onset and control of cellular immunity. In a highly selective process, MHC II presents peptides derived from exogenous antigens on the surface of antigen-presenting cells for T cell scrutiny. Understanding the rules defining this presentation holds critical insights into the regulation and potential manipulation of the cellular immune system. Here, we apply the NNAlign_MA machine learning framework to analyze and integrate large-scale eluted MHC II ligand mass spectrometry (MS) data sets to advance prediction of CD4+ epitopes. NNAlign_MA allows integration of mixed data types, handling ligands with multiple potential allele annotations, encoding of ligand context, leveraging information between data sets, and has pan-specific power allowing accurate predictions outside the set of molecules included in the training data. Applying this framework, we identified accurate binding motifs of more than 50 MHC class II molecules described by MS data, particularly expanding coverage for DP and DQ beyond that obtained using current MS motif deconvolution techniques. Furthermore, in large-scale benchmarking, the final model termed NetMHCIIpan-4.0 demonstrated improved performance beyond current state-of-the-art predictors for ligand and CD4+ T cell epitope prediction. These results suggest that NNAlign_MA and NetMHCIIpan-4.0 are powerful tools for analysis of immunopeptidome MS data, prediction of T cell epitopes, and development of personalized immunotherapies.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ANTIGEN PRESENTATION  
dc.subject
BIOINFORMATICS  
dc.subject
IMMUNOINFORMATICS  
dc.subject
IMMUNOLOGY  
dc.subject
IMMUNOPEPTIDOMICS  
dc.subject
MACHINE LEARNING  
dc.subject
MASS SPECTROMETRY  
dc.subject
MHC II  
dc.subject
NEOEPITOPES  
dc.subject.classification
Otras Ciencias de la Salud  
dc.subject.classification
Ciencias de la Salud  
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD  
dc.title
Improved Prediction of MHC II Antigen Presentation through Integration and Motif Deconvolution of Mass Spectrometry MHC Eluted Ligand Data  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-07-01T17:02:23Z  
dc.journal.volume
19  
dc.journal.number
6  
dc.journal.pagination
2304-2315  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Reynisson, Birkir. Technical University of Denmark; Dinamarca  
dc.description.fil
Fil: Barra, Carolina. Technical University of Denmark; Dinamarca  
dc.description.fil
Fil: Kaabinejadian, Saghar. Pure Mhc Llc; Estados Unidos  
dc.description.fil
Fil: Hildebrand, William H.. University Of Oklahoma. Health Sciences Center; Estados Unidos  
dc.description.fil
Fil: Peters, Bjoern. La Jolla Institute for Allergy and Immunology; Estados Unidos. University of California; Estados Unidos  
dc.description.fil
Fil: Nielsen, Morten. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina. Technical University of Denmark; Dinamarca  
dc.journal.title
Journal of Proteome Research  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jproteome.9b00874  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acs.jproteome.9b00874