Mostrar el registro sencillo del ítem

dc.contributor.author
Menendez, Yesica Cristina  
dc.contributor.author
Botto, Javier Francisco  
dc.contributor.author
Gomez, Nora V.  
dc.contributor.author
Miralles, Daniel Julio  
dc.contributor.author
Rondanini, Deborah Paola  
dc.date.available
2020-08-25T21:58:16Z  
dc.date.issued
2019-02  
dc.identifier.citation
Menendez, Yesica Cristina; Botto, Javier Francisco; Gomez, Nora V.; Miralles, Daniel Julio; Rondanini, Deborah Paola; Physiological maturity as a function of seed and pod water concentration in spring rapeseed (Brassica napus L.); Elsevier Science; Field Crops Research; 231; 2-2019; 1-9  
dc.identifier.issn
0378-4290  
dc.identifier.uri
http://hdl.handle.net/11336/112421  
dc.description.abstract
Determining the optimum time for rapeseed harvest is challenging due to non-uniform seed maturity resulting from asynchronous flowering and pod dehiscence from sequential racemes. Identifying physiological maturity (PM) by visual methods is subjective and results can be affected by environmental conditions. PM can be determined using a quantitative model based on seed water concentration (SWC) as previously demonstrated for several other crops, although not yet developed for rapeseed crop. The objective of this work was to study the relationship between the dynamics of seed dry weight and water concentration in seven spring rapeseed cultivars grown at two contrasting densities (15 and 60 pl m−2) in three experiments at one location in Buenos Aires (Argentina). We evaluated the timing of PM on the basis of SWC in seeds located in the main raceme, second and fourth floral branches. The evolution of seed fresh and dry weight was followed bi-weekly from the beginning of flowering to harvest maturity. In Exp. 1, the grain-filling duration ranged from 39 to 57 days (700–1100 °C d) and the growth of seeds from floral branches finished 3–8 days later than those from the main raceme. Seed dry weight at PM ranged from 2.4 to 2.7 and from 3.0 to 3.2 mg for Lynx and Monty cultivars, respectively, without significant effects of floral position or plant density. Bi-linear functions were used to fit the relationship between relative seed dry weight (RSDW) and SWC relationships (R2 from 0.85 to 0.95). Across cultivars and floral positions, PM was attained when seeds exhibited 46.3 ± 0.7% SWC (R2 = 0.90, P < 0.001, n = 441). This model was validated against independent data from Exps. 2 and 3, successfully simulating the dynamics of relative seed dry weight based on fruit WC (r = 0.88; P < 0.001, n = 275). At PM, the water content (WC) of whole pod was about 70% and the pod shattering began after this point, when the WC of the pod dropped drastically. We conclude that under non-stressful conditions, PM in rapeseed occurs at 46% SWC. Swathing can be conducted from SWC < 46%, instead of the currently recommended 35%, advancing the harvest and leaving the land available for sowing the next crop, which would represent an advantage for double cropping in intensified agricultural systems.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CANOLA  
dc.subject
GRAIN MOISTURE  
dc.subject
OILSEED RAPE  
dc.subject
POD SHATTERING  
dc.subject
SEED GROWTH  
dc.subject
SWATHING  
dc.subject.classification
Agricultura  
dc.subject.classification
Agricultura, Silvicultura y Pesca  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
Physiological maturity as a function of seed and pod water concentration in spring rapeseed (Brassica napus L.)  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-07-01T17:15:23Z  
dc.journal.volume
231  
dc.journal.pagination
1-9  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Menendez, Yesica Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina  
dc.description.fil
Fil: Botto, Javier Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina  
dc.description.fil
Fil: Gomez, Nora V.. Universidad de Buenos Aires. Facultad de Agronomía; Argentina  
dc.description.fil
Fil: Miralles, Daniel Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina  
dc.description.fil
Fil: Rondanini, Deborah Paola. Universidad Nacional de Lomas de Zamora. Facultad de Ciencias Agrarias. Instituto de Investigación en Producción Agropecuaria Ambiente y Salud. - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires. Instituto de Investigación en Producción Agropecuaria Ambiente y Salud; Argentina  
dc.journal.title
Field Crops Research  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0378429018308906  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.fcr.2018.11.002