Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Psychological distress associated with COVID-19 quarantine: Latent profile analysis, outcome prediction and mediation analysis

Fernández, Rodrigo SebastiánIcon ; Crivelli, Lucía; Guimet, Nahuel Magrath; Allegri, Ricardo FranciscoIcon ; Pedreira, Maria EugeniaIcon
Fecha de publicación: 12/2020
Editorial: Elsevier Science
Revista: Journal of Affective Disorders
ISSN: 0165-0327
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Psiquiatría

Resumen

Background Mental health of the population during COVID-19 quarantine could be at risk. Previous studies in short quarantines, found mood-related and anxiety symptomatology. Here we aimed to characterize the subtypes of psychological distress associated with quarantine, assess its prevalence, explore risk/protective factors, and possible mechanisms. Methods Online cross-sectional data (n = 4408) was collected during the Argentine quarantine, between 1st-17th April 2020 along a small replication study (n = 644). Psychological distress clusters were determined using latent profile analysis on a wide-range of symptoms using the complete Brief-Symptom Inventory-53. Multinomial and Elastic-net regression were performed to identify risk/protective factors among trait-measures (Personality and Resilience) and state-measures (COVID-19 related fear and coping-skills). Results Three latent-classes defined by symptom severity level were identified. The majority of individuals were classified in the mild (40.9%) and severe classes (41.0%). Participants reported elevated symptoms of Phobic-Anxiety (41.3%), Anxiety (31.8%), Depression (27.5%), General-Distress (27.1%), Obsession-Compulsion (25.1%) and Hostility (13.7%). Logistic-regressions analyses mainly revealed that women, young individuals, having a previous psychiatric diagnosis or trauma, having high levels of trait-neuroticism and COVID-related fear, were those at greater risk of psychological distress. In contrast, adults, being married, exercising, having upper-class income, having high levels of trait-resilience and coping-skills, were the most protected. Mediation analysis, showed that state-measures mediated the association between trait-measures and class-membership. Conclusions Quarantine was associated intense psychological distress. Attention should be given to COVID-19-related fear and coping-skills as they act as potential mediators in emotional suffering during quarantine.
Palabras clave: COVID-19 , LATENT PROFILE ANALYSIS , MENTAL HEALTH , PSYCHOLOGICAL DISTRESS , QUARANTINE
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.116Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/112356
URL: https://www.sciencedirect.com/science/article/pii/S0165032720325866
DOI: https://doi.org/10.1016/j.jad.2020.07.133
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Fernández, Rodrigo Sebastián; Crivelli, Lucía; Guimet, Nahuel Magrath; Allegri, Ricardo Francisco; Pedreira, Maria Eugenia; Psychological distress associated with COVID-19 quarantine: Latent profile analysis, outcome prediction and mediation analysis; Elsevier Science; Journal of Affective Disorders; 277; 12-2020; 75-84
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES