Artículo
The Karcher mean of three variables and quadric surfaces
Fecha de publicación:
10/2020
Editorial:
Academic Press Inc Elsevier Science
Revista:
Journal of Mathematical Analysis and Applications
ISSN:
0022-247X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The Riemannian or Karcher mean has recently become an important tool for the averaging and study of positive definite matrices. Finding an explicit formula for the Karcher mean is problematic even for 2x2 triples. In this paper we study (1) the linear formula for the Karcher mean of positive definite Hermitian matrices: Λ(A,B,C) = xA + yB+cZ with nonnegative coefficients, where the existence of nonnegative solutions is guaranteed by Sturm´s SLLN and Holbrook´s no dice theorem, and (2) the quadric surface induced by the determinantal formula: det(ABC)^(1/3)= det(xA+yB+zC). We show that the solution set forms a simplex of dimension less than equal 2 and settle the first problem for linearly dependent case. A classification of the quadric surfaces from the linear form of Karcher means is presented in terms of linear (in)dependence of A,B,C : hyperboloid of two sheets, hyperbolic cylinder, and parallel planes.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Choi, Hayoung; Ghiglioni, Eduardo Mario; Lim, Yongdo; The Karcher mean of three variables and quadric surfaces; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 490; 2; 10-2020; 1-29
Compartir
Altmétricas