Mostrar el registro sencillo del ítem
dc.contributor.author
Ríos Reina, Rocío
dc.contributor.author
Azcarate, Silvana Mariela
dc.contributor.author
Camiña, José Manuel
dc.contributor.author
Callejón, Raquel M.
dc.contributor.author
Amigo, José Manuel
dc.date.available
2020-08-20T14:58:25Z
dc.date.issued
2019-06
dc.identifier.citation
Ríos Reina, Rocío; Azcarate, Silvana Mariela; Camiña, José Manuel; Callejón, Raquel M.; Amigo, José Manuel; Application of hierarchical classification models and reliability estimation by bootstrapping, for authentication and discrimination of wine vinegars by UV–vis spectroscopy; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 191; 6-2019; 42-53
dc.identifier.issn
0169-7439
dc.identifier.uri
http://hdl.handle.net/11336/112022
dc.description.abstract
In recent years, three Spanish wine vinegars have obtained the indication of Protected Denomination of Origin (PDOs) due to their unique characteristics and traditional method of production: “Vinagre de Jerez”, “Vinagre de Condado de Huelva” and “Vinagre de Montilla-Moriles”. These vinegars are expensive due to their high quality, the long aging time and the high cost of production, reason why the adulteration and unfair competition in the vinegar industry are frequent practices. To avoid these frauds, several analytical techniques have been already studied for the characterization and authentication of these high quality vinegars. Nevertheless, ultraviolet–visible (UV–vis) spectroscopy, especially attractive for its simplicity and low cost, has not been previously used to assess PDO or other qualities as type of production or aging, in wine vinegars. For this reason, the potential of UV–vis spectroscopy was investigated for the first time as a rapid and inexpensive methodology for developing classification models to discriminate wine vinegars according to the production method, the PDO and the aging category. Spectra from 70 wine vinegars -including different categories within the 3 PDOs and also vinegars without PDO as known as rapid vinegars-have been analyzed and compared in the selected region of 280–600 nm. Principal components analysis (PCA) was used as exploratory method, while soft independent modelling-class (SIMCA) and partial least squares-discriminant analysis (PLS-DA) were employed for the development of a hierarchical classification model. Differences between categories and PDOs, as well as between PDO and Non-PDO wine vinegars, were observed according to the spectral regions around 300 nm and the visible regions around 500 nm. Furthermore, bootstrap resampling method was employed to generate distributions of classification results and to obtain confidence intervals in the classification. The hierarchical classification results open up the possibility of developing a tool that provides an easy and fast differentiation for the authentication of wine vinegars from different categories and denomination of origins.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
BOOTSTRAP
dc.subject
HIERARCHICAL MODEL
dc.subject
PLS-DA
dc.subject
PROTECTED DESIGNATION OF ORIGIN
dc.subject
SIMCA
dc.subject
WINE VINEGAR
dc.subject.classification
Química Analítica
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.subject.classification
Otras Ciencias Químicas
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.subject.classification
Otras Agricultura, Silvicultura y Pesca
dc.subject.classification
Agricultura, Silvicultura y Pesca
dc.subject.classification
CIENCIAS AGRÍCOLAS
dc.title
Application of hierarchical classification models and reliability estimation by bootstrapping, for authentication and discrimination of wine vinegars by UV–vis spectroscopy
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-04-23T19:30:31Z
dc.journal.volume
191
dc.journal.pagination
42-53
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Ríos Reina, Rocío. Universidad de Sevilla; España
dc.description.fil
Fil: Azcarate, Silvana Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina
dc.description.fil
Fil: Camiña, José Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina
dc.description.fil
Fil: Callejón, Raquel M.. Universidad de Sevilla; España
dc.description.fil
Fil: Amigo, José Manuel. Universidad de Copenhagen; Dinamarca
dc.journal.title
Chemometrics and Intelligent Laboratory Systems
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.chemolab.2019.06.001
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0169743919301972
Archivos asociados