Mostrar el registro sencillo del ítem
dc.contributor.author
Sosa Haudet, Santiago
dc.contributor.author
Rodríguez, Martín Alejandro
dc.contributor.author
Carranza, Ricardo Mario
dc.date.available
2020-08-19T18:31:33Z
dc.date.issued
2015-06
dc.identifier.citation
Sosa Haudet, Santiago; Rodríguez, Martín Alejandro; Carranza, Ricardo Mario; Determining the Effect of the Main Alloying Elements on Localized Corrosion in Nickel Alloys Using Artificial Neural Networks; Elsevier; Procedia Materials Science; 8; 6-2015; 21-28
dc.identifier.issn
2211-8128
dc.identifier.uri
http://hdl.handle.net/11336/111954
dc.description.abstract
Nickel base alloys are considered among candidate materials for engineered barriers of nuclear repositories. The localized corrosion resistance is a determining factor in materials selection for this application. This work compares the crevice corrosion resistance of several commercial nickel base alloys using artificial neural networks. The crevice corrosion repassivation potential of the tested alloys was determined by the potentiodynamic-galvanostatic-potentiodynamic (PD-GS-PD) method. The testing temperature was 60ªC and the chloride concentrations used were 0,1M, 1M and 10M. The results indicate that the repassivation potential increases linearly with the PREN (Pitting Resistant Equivalent Number) at high chloride concentrations. We also found a linear relationship between the repassivation potential and the logarithm of the concentration of chloride. Analysis from artificial neural networks presents distinctive patterns between the mayor alloying components and the chloride concentration and the repassivation potential. Predictions from artificial neural networks fit with successive tested commercial nickel alloys.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ARTIFICIAL NEURAL NETWORKS
dc.subject
CREVICE CORROSION
dc.subject
REPASSIVATION POTENTIAL
dc.subject
CHLORIDES
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.subject.classification
Otras Ingeniería de los Materiales
dc.subject.classification
Ingeniería de los Materiales
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Determining the Effect of the Main Alloying Elements on Localized Corrosion in Nickel Alloys Using Artificial Neural Networks
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-08-18T19:08:58Z
dc.journal.volume
8
dc.journal.pagination
21-28
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Sosa Haudet, Santiago. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Universidad Nacional de San Martín. Instituto Sabato; Argentina
dc.description.fil
Fil: Rodríguez, Martín Alejandro. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Universidad Nacional de San Martín. Instituto Sabato; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Carranza, Ricardo Mario. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Universidad Nacional de San Martín. Instituto Sabato; Argentina
dc.journal.title
Procedia Materials Science
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S2211812815000450
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.mspro.2015.04.044
Archivos asociados