Mostrar el registro sencillo del ítem

dc.contributor.author
Sosa Haudet, Santiago  
dc.contributor.author
Rodríguez, Martín Alejandro  
dc.contributor.author
Carranza, Ricardo Mario  
dc.date.available
2020-08-19T18:31:33Z  
dc.date.issued
2015-06  
dc.identifier.citation
Sosa Haudet, Santiago; Rodríguez, Martín Alejandro; Carranza, Ricardo Mario; Determining the Effect of the Main Alloying Elements on Localized Corrosion in Nickel Alloys Using Artificial Neural Networks; Elsevier; Procedia Materials Science; 8; 6-2015; 21-28  
dc.identifier.issn
2211-8128  
dc.identifier.uri
http://hdl.handle.net/11336/111954  
dc.description.abstract
Nickel base alloys are considered among candidate materials for engineered barriers of nuclear repositories. The localized corrosion resistance is a determining factor in materials selection for this application. This work compares the crevice corrosion resistance of several commercial nickel base alloys using artificial neural networks. The crevice corrosion repassivation potential of the tested alloys was determined by the potentiodynamic-galvanostatic-potentiodynamic (PD-GS-PD) method. The testing temperature was 60ªC and the chloride concentrations used were 0,1M, 1M and 10M. The results indicate that the repassivation potential increases linearly with the PREN (Pitting Resistant Equivalent Number) at high chloride concentrations. We also found a linear relationship between the repassivation potential and the logarithm of the concentration of chloride. Analysis from artificial neural networks presents distinctive patterns between the mayor alloying components and the chloride concentration and the repassivation potential. Predictions from artificial neural networks fit with successive tested commercial nickel alloys.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ARTIFICIAL NEURAL NETWORKS  
dc.subject
CREVICE CORROSION  
dc.subject
REPASSIVATION POTENTIAL  
dc.subject
CHLORIDES  
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Otras Ingeniería de los Materiales  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Determining the Effect of the Main Alloying Elements on Localized Corrosion in Nickel Alloys Using Artificial Neural Networks  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-08-18T19:08:58Z  
dc.journal.volume
8  
dc.journal.pagination
21-28  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Sosa Haudet, Santiago. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Universidad Nacional de San Martín. Instituto Sabato; Argentina  
dc.description.fil
Fil: Rodríguez, Martín Alejandro. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Universidad Nacional de San Martín. Instituto Sabato; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Carranza, Ricardo Mario. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Universidad Nacional de San Martín. Instituto Sabato; Argentina  
dc.journal.title
Procedia Materials Science  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S2211812815000450  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.mspro.2015.04.044