Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A dynamic data-driven method for dealing with model structural error in soil moisture data assimilation

Zhang, Qiuru; Shi, Liangsheng; Holzman, Mauro EzequielIcon ; Ye, Ming; Wang, Yakun; Carmona, FacundoIcon ; Zha, Yuanyuan
Fecha de publicación: 10/2019
Editorial: Elsevier
Revista: Advances in Water Resources
ISSN: 0309-1708
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Oceanografía, Hidrología, Recursos Hídricos; Otras Ciencias de la Tierra y relacionadas con el Medio Ambiente

Resumen

Attributing to the flexibility in considering various types of observation error and model error, data assimilation has been increasingly applied to dynamically improve soil moisture modeling in many hydrological practices. However, accurate characterization of model error, especially the part caused by defective model structure, presents a significant challenge to the successful implementation of data assimilation. Model structural error has received limited attention relative to parameter and input errors, mainly due to our poor understanding of structural inadequacy and the difficulties in parameterizing structural error. In this paper, we present a dynamic data-driven approach to estimate the model structural error in soil moisture data assimilation without the need for identifying error generation mechanism or specifying particular form for the error model. The error model is based on the Gaussian process regression and then integrated into the ensemble Kalman filter (EnKF) to form a hybrid method for dealing with multi-source model errors. Two variants of the hybrid method in terms of two different error correction manners are proposed. The effectiveness of the proposed method is tested through a suit of synthetic cases and a real-world case. Results demonstrate the potential of the proposed hybrid method for estimating model structural error and providing improved model predictions. Compared to the traditional EnKF without explicitly considering the model structural error, parameter compensation issue is obviously reduced and soil moisture retrieval is substantially improved.
Palabras clave: DATA ASSIMILATION , DATA-DRIVING , MACHINE LEARNING , MODEL STRUCTURAL ERROR , SOIL MOISTURE
Ver el registro completo
 
Archivos asociados
Tamaño: 6.417Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/111757
DOI: http://dx.doi.org/10.1016/j.advwatres.2019.103407
URL: https://www.sciencedirect.com/science/article/abs/pii/S0309170818310170
Colecciones
Articulos (IHLLA)
Articulos de INSTITUTO DE HIDROLOGIA DE LLANURAS "DR. EDUARDO JORGE USUNOFF"
Citación
Zhang, Qiuru; Shi, Liangsheng; Holzman, Mauro Ezequiel; Ye, Ming; Wang, Yakun; et al.; A dynamic data-driven method for dealing with model structural error in soil moisture data assimilation; Elsevier; Advances in Water Resources; 132; 103407; 10-2019; 1-17
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES