Mostrar el registro sencillo del ítem

dc.contributor.author
Andruchow, Esteban  
dc.contributor.author
Chiumiento, Eduardo Hernan  
dc.contributor.author
Larotonda, Gabriel Andrés  
dc.date.available
2020-08-12T16:10:05Z  
dc.date.issued
2010-05  
dc.identifier.citation
Andruchow, Esteban; Chiumiento, Eduardo Hernan; Larotonda, Gabriel Andrés; Homogeneous manifolds from noncommutative measure spaces; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 365; 2; 5-2010; 541-558  
dc.identifier.issn
0022-247X  
dc.identifier.uri
http://hdl.handle.net/11336/111559  
dc.description.abstract
Let M be a finite von Neumann algebra with a faithful trace τ. In this paper we study metric geometry of homogeneous spaces O of the unitary group U of M, endowed with a Finsler quotient metric induced by the p-norms of τ, ||x||_p=τ(|x|^p)^{1/p}, p ≥ 1. The main results include the following. The unitary group carries on a rectifiable distance d_p induced by measuring the length of curves with the p-norm. If we identify O as a quotient of groups, then there is a natural quotient distance d_p that metrizes the quotient topology. On the other hand, the Finsler quotient metric defined in O provides a way to measure curves, and therefore, there is an associated rectifiable distance d_{O,p}$,. For p ≥2, we prove that the distances d_p and d_{O , p} coincide. Based on this fact, we show that the metric space (O,d_p) is a complete path metric space. The other problem treated in this article is the existence of metric geodesics, or curves of minimal length, in O. We give two abstract partial results in this direction. The first concerns the initial values problem and the second the fixed endpoints problem. We show how these results apply to several examples. In the process, we improve some results about the metric geometry of UM with the p-norm.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Academic Press Inc Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
FINITE VON NEUMANN ALGEBRA  
dc.subject
FINSLER METRIC  
dc.subject
GEODESIC  
dc.subject
HOMOGENEOUS SPACE  
dc.subject
PATH METRIC SPACE  
dc.subject
P-NORM  
dc.subject
QUOTIENT METRIC  
dc.subject
UNITARY GROUP  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Homogeneous manifolds from noncommutative measure spaces  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-08-05T16:06:15Z  
dc.journal.volume
365  
dc.journal.number
2  
dc.journal.pagination
541-558  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; Argentina  
dc.description.fil
Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento; Argentina  
dc.description.fil
Fil: Larotonda, Gabriel Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento; Argentina  
dc.journal.title
Journal of Mathematical Analysis and Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.jmaa.2009.11.024  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022247X09009640