Mostrar el registro sencillo del ítem
dc.contributor.author
Andruchow, Esteban
dc.contributor.author
Chiumiento, Eduardo Hernan
dc.contributor.author
Larotonda, Gabriel Andrés
dc.date.available
2020-08-12T16:10:05Z
dc.date.issued
2010-05
dc.identifier.citation
Andruchow, Esteban; Chiumiento, Eduardo Hernan; Larotonda, Gabriel Andrés; Homogeneous manifolds from noncommutative measure spaces; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 365; 2; 5-2010; 541-558
dc.identifier.issn
0022-247X
dc.identifier.uri
http://hdl.handle.net/11336/111559
dc.description.abstract
Let M be a finite von Neumann algebra with a faithful trace τ. In this paper we study metric geometry of homogeneous spaces O of the unitary group U of M, endowed with a Finsler quotient metric induced by the p-norms of τ, ||x||_p=τ(|x|^p)^{1/p}, p ≥ 1. The main results include the following. The unitary group carries on a rectifiable distance d_p induced by measuring the length of curves with the p-norm. If we identify O as a quotient of groups, then there is a natural quotient distance d_p that metrizes the quotient topology. On the other hand, the Finsler quotient metric defined in O provides a way to measure curves, and therefore, there is an associated rectifiable distance d_{O,p}$,. For p ≥2, we prove that the distances d_p and d_{O , p} coincide. Based on this fact, we show that the metric space (O,d_p) is a complete path metric space. The other problem treated in this article is the existence of metric geodesics, or curves of minimal length, in O. We give two abstract partial results in this direction. The first concerns the initial values problem and the second the fixed endpoints problem. We show how these results apply to several examples. In the process, we improve some results about the metric geometry of UM with the p-norm.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Academic Press Inc Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
FINITE VON NEUMANN ALGEBRA
dc.subject
FINSLER METRIC
dc.subject
GEODESIC
dc.subject
HOMOGENEOUS SPACE
dc.subject
PATH METRIC SPACE
dc.subject
P-NORM
dc.subject
QUOTIENT METRIC
dc.subject
UNITARY GROUP
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Homogeneous manifolds from noncommutative measure spaces
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-08-05T16:06:15Z
dc.journal.volume
365
dc.journal.number
2
dc.journal.pagination
541-558
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; Argentina
dc.description.fil
Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento; Argentina
dc.description.fil
Fil: Larotonda, Gabriel Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento; Argentina
dc.journal.title
Journal of Mathematical Analysis and Applications
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.jmaa.2009.11.024
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022247X09009640
Archivos asociados