Mostrar el registro sencillo del ítem

dc.contributor.author
Alfonso Tobón, Leslie Lissette  
dc.contributor.author
Branda, Maria Marta  
dc.date.available
2020-08-10T19:12:29Z  
dc.date.issued
2019-11-21  
dc.identifier.citation
Alfonso Tobón, Leslie Lissette; Branda, Maria Marta; Predicting the adsorption capacity of iron nanoparticles with metallic impurities (Cu, Ni and Pd) for Arsenic removal: a DFT study; Springer; Adsorption; 26; 1; 21-11-2019; 12-139  
dc.identifier.issn
0929-5607  
dc.identifier.uri
http://hdl.handle.net/11336/111343  
dc.description.abstract
The potential capacities of bimetallic nanoclusters, constituted by Fe doped with metal atoms of Cu, Ni and Pd, for the H3AsO3 adsorption and reduction, were studied by density functional theory calculations. Both the pure Fe nanocluster and the one doped with a Ni atom on an edge, show greater adsorbent and reducing capacities than the others substrates. Then, the structural and electronic properties of bimetallic core–shell nanoparticles constituted by 80 atoms were also studied. The highest adsorption capacity was found on cFe/sNi core–shell nanoparticle, decreasing the activity in this order: cFe/ sNi>cNi/sFe>cFe/sCu>cCu/sFe. The interaction found between the atom of As and the surface atom of Ni coincides with a signifcant hybridization between the s–p As states and the sp and d bands of the metal atom. The charge transfer from the core atoms to the surface generates a charge accumulation on the cFe/sNi surface, and a surface–subsurface dipole. We have also observed that higher adsorption energies correspond linearly with more pronounced displacement of the d band center from the Fermi level. Finally, we want to highlight the reductive capacity of this material (cFe/sNi) to adsorption Arsenious acid, which is certainly favorable for the immobilization of this pollutant.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
NANOPARTICLES  
dc.subject
IRON  
dc.subject
ARSENIC  
dc.subject
DFT  
dc.subject
CHARGE DENSITY DIFERENCE  
dc.subject
PROJECTED DENSITY OF STATES  
dc.subject.classification
Otras Ciencias Químicas  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Predicting the adsorption capacity of iron nanoparticles with metallic impurities (Cu, Ni and Pd) for Arsenic removal: a DFT study  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-02-26T19:31:41Z  
dc.identifier.eissn
1572-8757  
dc.journal.volume
26  
dc.journal.number
1  
dc.journal.pagination
12-139  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Alfonso Tobón, Leslie Lissette. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina  
dc.description.fil
Fil: Branda, Maria Marta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina  
dc.journal.title
Adsorption  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10450-019-00177-4  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10450-019-00177-4