Mostrar el registro sencillo del ítem
dc.contributor.author
Power, Pablo
dc.contributor.author
Galleni, Moreno
dc.contributor.author
Ayala, Juan A
dc.contributor.author
Gutkind, Gabriel Osvaldo
dc.date.available
2020-08-10T14:10:57Z
dc.date.issued
2006-03
dc.identifier.citation
Power, Pablo; Galleni, Moreno; Ayala, Juan A; Gutkind, Gabriel Osvaldo; Biochemical and Molecular Characterization of Three New Variants of AmpC β-Lactamases from Morganella morganii; American Society for Microbiology; Antimicrobial Agents and Chemotherapy; 50; 3; 3-2006; 962-967
dc.identifier.issn
0066-4804
dc.identifier.uri
http://hdl.handle.net/11336/111298
dc.description.abstract
Morganella morganii produces an inducible, chromosomally encoded AmpC beta-lactamase. We describe in this study three new variants of AmpC within this species with apparent pIs of 6.6 (M19 from M. morganii strain PP19), 7.4 (M29 from M. morganii strain PP29), and 7.8 (M37 from M. morganii strain PP37). After gene sequencing, deduced amino acid sequences displayed one to six substitutions when compared to the available Morganella AmpC sequences. An AmpR-encoding gene was also found upstream of ampC, including the LysR regulators´ helix-turn-helix DNA-binding domain and the putative T-N11-A-protected region in the ampR-ampC intercistronic sequence. All three AmpC variants were purified from in vitro-generated derepressed mutants and showed overall similar kinetic parameters. None of the observed amino acid changes, occurring at the surface of the protein, appear to have a major influence in their catalytic properties. Morganella AmpCs exhibit the highest catalytic efficiencies (k(cat)/K(m)) on classical penicillins, cefoxitin, narrow-spectrum cephalosporins, and cefotaxime. Cefotaxime was more effectively hydrolyzed than other oxyimino-cephalosporins, whereas cefepime was 3 log-fold less efficiently hydrolyzed than other cephalosporins such as cephalothin. Several differences with other AmpC beta-lactamases were found. Ampicillin was more efficiently hydrolyzed than benzylpenicillin. High k(cat)/K(m) values were observed for oxacillin and piperacillin, which are usually poor substrates for AmpC. A fairly efficient hydrolysis of imipenem was detected as well. Aztreonam, carbenicillin, and tazobactam were effective transient inactivators of these variants. Morganella morganii produces an inducible, chromosomally encoded AmpC beta-lactamase. We describe in this study three new variants of AmpC within this species with apparent pIs of 6.6 (M19 from M. morganii strain PP19), 7.4 (M29 from M. morganii strain PP29), and 7.8 (M37 from M. morganii strain PP37). After gene sequencing, deduced amino acid sequences displayed one to six substitutions when compared to the available Morganella AmpC sequences. An AmpR-encoding gene was also found upstream of ampC, including the LysR regulators´ helix-turn-helix DNA-binding domain and the putative T-N11-A-protected region in the ampR-ampC intercistronic sequence. All three AmpC variants were purified from in vitro-generated derepressed mutants and showed overall similar kinetic parameters. None of the observed amino acid changes, occurring at the surface of the protein, appear to have a major influence in their catalytic properties. Morganella AmpCs exhibit the highest catalytic efficiencies (k(cat)/K(m)) on classical penicillins, cefoxitin, narrow-spectrum cephalosporins, and cefotaxime. Cefotaxime was more effectively hydrolyzed than other oxyimino-cephalosporins, whereas cefepime was 3 log-fold less efficiently hydrolyzed than other cephalosporins such as cephalothin. Several differences with other AmpC beta-lactamases were found. Ampicillin was more efficiently hydrolyzed than benzylpenicillin. High k(cat)/K(m) values were observed for oxacillin and piperacillin, which are usually poor substrates for AmpC. A fairly efficient hydrolysis of imipenem was detected as well. Aztreonam, carbenicillin, and tazobactam were effective transient inactivators of these variants.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Society for Microbiology
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject.classification
Farmacología y Farmacia
dc.subject.classification
Medicina Básica
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD
dc.title
Biochemical and Molecular Characterization of Three New Variants of AmpC β-Lactamases from Morganella morganii
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-07-21T20:20:19Z
dc.journal.volume
50
dc.journal.number
3
dc.journal.pagination
962-967
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Power, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Microbiología; Argentina
dc.description.fil
Fil: Galleni, Moreno. Université de Liège; Bélgica
dc.description.fil
Fil: Ayala, Juan A. Consejo Superior de Investigaciones Científicas; España
dc.description.fil
Fil: Gutkind, Gabriel Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología y Biotecnología. Cátedra de Microbiología Industrial y Biotecnología; Argentina
dc.journal.title
Antimicrobial Agents and Chemotherapy
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1426437/
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1128/AAC.50.3.962-967.2006
Archivos asociados