Mostrar el registro sencillo del ítem

dc.contributor.author
Power, Pablo  
dc.contributor.author
Galleni, Moreno  
dc.contributor.author
Ayala, Juan A  
dc.contributor.author
Gutkind, Gabriel Osvaldo  
dc.date.available
2020-08-10T14:10:57Z  
dc.date.issued
2006-03  
dc.identifier.citation
Power, Pablo; Galleni, Moreno; Ayala, Juan A; Gutkind, Gabriel Osvaldo; Biochemical and Molecular Characterization of Three New Variants of AmpC β-Lactamases from Morganella morganii; American Society for Microbiology; Antimicrobial Agents and Chemotherapy; 50; 3; 3-2006; 962-967  
dc.identifier.issn
0066-4804  
dc.identifier.uri
http://hdl.handle.net/11336/111298  
dc.description.abstract
Morganella morganii produces an inducible, chromosomally encoded AmpC beta-lactamase. We describe in this study three new variants of AmpC within this species with apparent pIs of 6.6 (M19 from M. morganii strain PP19), 7.4 (M29 from M. morganii strain PP29), and 7.8 (M37 from M. morganii strain PP37). After gene sequencing, deduced amino acid sequences displayed one to six substitutions when compared to the available Morganella AmpC sequences. An AmpR-encoding gene was also found upstream of ampC, including the LysR regulators´ helix-turn-helix DNA-binding domain and the putative T-N11-A-protected region in the ampR-ampC intercistronic sequence. All three AmpC variants were purified from in vitro-generated derepressed mutants and showed overall similar kinetic parameters. None of the observed amino acid changes, occurring at the surface of the protein, appear to have a major influence in their catalytic properties. Morganella AmpCs exhibit the highest catalytic efficiencies (k(cat)/K(m)) on classical penicillins, cefoxitin, narrow-spectrum cephalosporins, and cefotaxime. Cefotaxime was more effectively hydrolyzed than other oxyimino-cephalosporins, whereas cefepime was 3 log-fold less efficiently hydrolyzed than other cephalosporins such as cephalothin. Several differences with other AmpC beta-lactamases were found. Ampicillin was more efficiently hydrolyzed than benzylpenicillin. High k(cat)/K(m) values were observed for oxacillin and piperacillin, which are usually poor substrates for AmpC. A fairly efficient hydrolysis of imipenem was detected as well. Aztreonam, carbenicillin, and tazobactam were effective transient inactivators of these variants. Morganella morganii produces an inducible, chromosomally encoded AmpC beta-lactamase. We describe in this study three new variants of AmpC within this species with apparent pIs of 6.6 (M19 from M. morganii strain PP19), 7.4 (M29 from M. morganii strain PP29), and 7.8 (M37 from M. morganii strain PP37). After gene sequencing, deduced amino acid sequences displayed one to six substitutions when compared to the available Morganella AmpC sequences. An AmpR-encoding gene was also found upstream of ampC, including the LysR regulators´ helix-turn-helix DNA-binding domain and the putative T-N11-A-protected region in the ampR-ampC intercistronic sequence. All three AmpC variants were purified from in vitro-generated derepressed mutants and showed overall similar kinetic parameters. None of the observed amino acid changes, occurring at the surface of the protein, appear to have a major influence in their catalytic properties. Morganella AmpCs exhibit the highest catalytic efficiencies (k(cat)/K(m)) on classical penicillins, cefoxitin, narrow-spectrum cephalosporins, and cefotaxime. Cefotaxime was more effectively hydrolyzed than other oxyimino-cephalosporins, whereas cefepime was 3 log-fold less efficiently hydrolyzed than other cephalosporins such as cephalothin. Several differences with other AmpC beta-lactamases were found. Ampicillin was more efficiently hydrolyzed than benzylpenicillin. High k(cat)/K(m) values were observed for oxacillin and piperacillin, which are usually poor substrates for AmpC. A fairly efficient hydrolysis of imipenem was detected as well. Aztreonam, carbenicillin, and tazobactam were effective transient inactivators of these variants.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Society for Microbiology  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject.classification
Farmacología y Farmacia  
dc.subject.classification
Medicina Básica  
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD  
dc.title
Biochemical and Molecular Characterization of Three New Variants of AmpC β-Lactamases from Morganella morganii  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-07-21T20:20:19Z  
dc.journal.volume
50  
dc.journal.number
3  
dc.journal.pagination
962-967  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Power, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Microbiología; Argentina  
dc.description.fil
Fil: Galleni, Moreno. Université de Liège; Bélgica  
dc.description.fil
Fil: Ayala, Juan A. Consejo Superior de Investigaciones Científicas; España  
dc.description.fil
Fil: Gutkind, Gabriel Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología y Biotecnología. Cátedra de Microbiología Industrial y Biotecnología; Argentina  
dc.journal.title
Antimicrobial Agents and Chemotherapy  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1426437/  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1128/AAC.50.3.962-967.2006