Mostrar el registro sencillo del ítem

dc.contributor.author
Soldera, Marcos Maximiliano  
dc.contributor.author
Estrada, Emiliano  
dc.contributor.author
Taretto, Kurt Rodolfo  
dc.date.available
2020-08-07T15:13:55Z  
dc.date.issued
2013-04  
dc.identifier.citation
Soldera, Marcos Maximiliano; Estrada, Emiliano; Taretto, Kurt Rodolfo; Simulations of photocurrent improvement through combined geometric/diffracting light trapping in organic small molecule solar cells; Wiley; Physica Status Solidi A-applied Research; 210; 4-2013; 1345-1352  
dc.identifier.issn
0031-8965  
dc.identifier.uri
http://hdl.handle.net/11336/111156  
dc.description.abstract
Although organic solar cells have recently shown remarkable high power conversion efficiencies approaching 12%, further improvements are needed to become a low cost alternative to current inorganic photovoltaic technologies. Optical losses due to insufficient light trapping, parasitic absorption in the contact layers and reflectance limit drastically the photocurrent delivered by these solar cells. In this work, we simulated two- (2D) and three-dimensional (3D) surface textures in the micro- and submicroscale to improve light trapping in optimized organic solar cells based on copper phtalocyanine (CuPc) and fullerene (C60). The analysis was carried out with the aid of the finite elementmethod in 2Dand 3D, taking into account interference as well as reflection and diffraction of the incidentAM1.5 spectrum. At normal incidence, up to 23% improvement in the photocurrent over the planar cell was obtained. To investigate the texture performance under practical circumstances, we simulated 2D microstructures during a typical summer day, taking the change of incidence angle and radiation intensity into account. Results clearly showthat all textured cells delivermore photocurrent than the planar cell, even at oblique angles.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Wiley  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
FINITE ELEMENT METHOD  
dc.subject
LIGHT TRAPPING  
dc.subject
ORGANIC SOLAR CELLS  
dc.subject.classification
Física de los Materiales Condensados  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Simulations of photocurrent improvement through combined geometric/diffracting light trapping in organic small molecule solar cells  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-03-16T20:02:07Z  
dc.identifier.eissn
1521-396X  
dc.journal.number
210  
dc.journal.pagination
1345-1352  
dc.journal.pais
Alemania  
dc.journal.ciudad
Weinheim  
dc.description.fil
Fil: Soldera, Marcos Maximiliano. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Electrotécnica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Estrada, Emiliano. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Electrotécnica; Argentina  
dc.description.fil
Fil: Taretto, Kurt Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Electrotécnica; Argentina  
dc.journal.title
Physica Status Solidi A-applied Research  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/pssa.201228637  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/pssa.201228637