Mostrar el registro sencillo del ítem
dc.contributor.author
Abril, Juan Carlos
dc.contributor.author
Blacona, Maria Teresa
dc.date.available
2020-08-07T14:08:48Z
dc.date.issued
2003-09
dc.identifier.citation
Abril, Juan Carlos; Blacona, Maria Teresa; Model used to determine the daily average demand of electric energy in Argentina - A state space approach; Pakistan Journal of Statistics; Pakistan Journal of Statistics; 19; 3; 9-2003; 353-373
dc.identifier.issn
1012-9367
dc.identifier.uri
http://hdl.handle.net/11336/111117
dc.description.abstract
This work shows the usefulness of state-space models to adjust and forecast daily time series, and the technique of periodic cubic spline regression to model annual seasonality. A structural model is used to analyzed the series of daily average demand of electricity in Argentina. This model considers the trend, the weekly and annual seasonal component, the effect of public holidays, two cycles, and the temperature as explanatory variable. The method gave satisfactory results, both at the adjustment level as well as in the forecasting and interpretability of its components. Alternative methods are recommended when the future temperature values are unknown.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Pakistan Journal of Statistics
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
DAILY TIME SERIES
dc.subject
ELECTRICITY DEMAND
dc.subject
KALMAN FILTERING
dc.subject
PERIODIC CIBIC SPLINE
dc.subject
STATE SPACE
dc.subject
STRUCTURAL MODEL
dc.subject.classification
Economía, Econometría
dc.subject.classification
Economía y Negocios
dc.subject.classification
CIENCIAS SOCIALES
dc.title
Model used to determine the daily average demand of electric energy in Argentina - A state space approach
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-07-20T15:43:53Z
dc.journal.volume
19
dc.journal.number
3
dc.journal.pagination
353-373
dc.journal.pais
Pakistán
dc.journal.ciudad
Lahore
dc.description.fil
Fil: Abril, Juan Carlos. Universidad Nacional de Tucumán. Facultad de Ciencias Económicas. Instituto de Investigaciones Estadísticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina
dc.description.fil
Fil: Blacona, Maria Teresa. Universidad Nacional de Rosario; Argentina
dc.journal.title
Pakistan Journal of Statistics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.pakjs.com/1985-to-2016/
Archivos asociados