Artículo
Projective spaces of a C*-algebra
Fecha de publicación:
06/2000
Editorial:
Birkhauser Verlag Ag
Revista:
Integral Equations and Operator Theory
ISSN:
0378-620X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Based on the projective matrix spaces studied by B. Schwarz and A. Zaks, we study the notion of projective space associated to a C*-algebra A with a fixed projection p. The resulting space P(p) admits a rich geometrical structure as a holomorphic manifold and a homogeneous reductive space of the invertible group of A. Moreover, several metrics (chordal, spherical, pseudo-chordal, non- Euclidean - in Schwarz-Zaks terminology) are considered, allowing a comparison among P(p), the Grassmann manifold of A and the space of positive elements which are unitary with respect to the bilinear form induced by the reflection ε= 2p - 1. Among several metrical results, we prove that geodesics are unique and of minimal length when measured with the spherical and non-Euclidean metrics.
Palabras clave:
PROJECTIVE SPACE
,
C*-ALGEBRAS
,
PROJECTIONS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Andruchow, Esteban; Corach, Gustavo; Stojanoff, Demetrio; Projective spaces of a C*-algebra; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 37; 2; 6-2000; 143-168
Compartir
Altmétricas