Mostrar el registro sencillo del ítem
dc.contributor.author
Traversaro Varela, Francisco
dc.contributor.author
Ciarrocchi, Nicolás
dc.contributor.author
Pollo-cattaneo, María Florencia
dc.contributor.author
Redelico, Francisco Oscar
dc.date.available
2020-07-30T19:51:36Z
dc.date.issued
2019-01
dc.identifier.citation
Traversaro Varela, Francisco; Ciarrocchi, Nicolás; Pollo-cattaneo, María Florencia; Redelico, Francisco Oscar; Comparing different approaches to compute Permutation Entropy with coarse time series; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 513; 1-2019; 635-643
dc.identifier.issn
0378-4371
dc.identifier.uri
http://hdl.handle.net/11336/110601
dc.description.abstract
Bandt and Pompe introduced Permutation Entropy as a complexity measure and has been widely used in time series analysis and in many fields of nonlinear dynamics. In theory these time series come from a process that generates continuous values, and if equal values exists in a neighborhood, , they can be neglected with no consequences because their probability of occurrence is insignificant. Since then, this measure has been modified and extended, in particular in cases when the amount of equal values in the time series is large due to the observational method, and cannot be neglected. We test the new Data Driven Method of Imputation that cope with this type of time series without modifying the essence of the Bandt and Pompe Probability Distribution Function and compare it with the Modified Permutation Entropy, a complexity measure that assumes that equal values are not from artifacts of observations but they are typical of the data generator process. The Data Driven Method of Imputation proves to outperform the Modified Permutation Entropy.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
COARSE TIME SERIES
dc.subject
NON LINEAR DYNAMICS
dc.subject
PERMUTATION ENTROPY
dc.subject.classification
Otras Ingenierías y Tecnologías
dc.subject.classification
Otras Ingenierías y Tecnologías
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Comparing different approaches to compute Permutation Entropy with coarse time series
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-04-24T17:59:12Z
dc.journal.volume
513
dc.journal.pagination
635-643
dc.journal.pais
Países Bajos
dc.description.fil
Fil: Traversaro Varela, Francisco. Universidad Nacional de Lanús; Argentina. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Ciarrocchi, Nicolás. Hospital Italiano; Argentina
dc.description.fil
Fil: Pollo-cattaneo, María Florencia. Universidad Tecnológica Nacional; Argentina
dc.description.fil
Fil: Redelico, Francisco Oscar. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Hospital Italiano. Departamento de Informática En Salud.; Argentina
dc.journal.title
Physica A: Statistical Mechanics and its Applications
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.physa.2018.08.021
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0378437118309518
Archivos asociados