Mostrar el registro sencillo del ítem
dc.contributor.author
Guccione, Jorge Alberto
dc.contributor.author
Guccione, Juan Jose
dc.date.available
2020-07-28T14:40:04Z
dc.date.issued
2001-09
dc.identifier.citation
Guccione, Jorge Alberto; Guccione, Juan Jose; Hochschild (Co)Homology of Differential Operator Rings; Academic Press Inc Elsevier Science; Journal of Algebra; 243; 2; 9-2001; 596-614
dc.identifier.issn
0021-8693
dc.identifier.uri
http://hdl.handle.net/11336/110409
dc.description.abstract
We show that the Hochschild homology of a differential operator kalgebra E = A#f U(g), is the homology of a deformation of the Chevalley-Eilenberg complex of g with coefficients in (M ⊗A^-∗, b∗). Moreover, when A is smooth and k is a characteristic zero field, we obtain a type of Hochschild-Kostant-Rosenberg theorem for these algebras. When A = k our complex reduce to the one obtained in [K] for the homology of filtrated algebras whose associated graded algebras are symmetric algebras. In the last section we give similar results for the cohomology.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Academic Press Inc Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Hochschild (Co)Homology of Differential Operator Rings
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-07-21T20:29:04Z
dc.journal.volume
243
dc.journal.number
2
dc.journal.pagination
596-614
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Guccione, Jorge Alberto. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Guccione, Juan Jose. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
dc.journal.title
Journal of Algebra
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021869301988672
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1006/jabr.2001.8867
Archivos asociados