Mostrar el registro sencillo del ítem

dc.contributor.author
Vuong, Quoc Lam  
dc.contributor.author
Van Doorslaer, Sabine  
dc.contributor.author
Bridot, Jean Luc  
dc.contributor.author
Argante, Corradina  
dc.contributor.author
Alejandro, Gabriela  
dc.contributor.author
Hermann, Raphaël  
dc.contributor.author
Disch, Sabrina  
dc.contributor.author
Mattea, Carlos  
dc.contributor.author
Stapf, Siegfried  
dc.contributor.author
Gossuin, Yves  
dc.date.available
2017-01-10T18:21:32Z  
dc.date.issued
2012-12  
dc.identifier.citation
Vuong, Quoc Lam; Van Doorslaer, Sabine; Bridot, Jean Luc; Argante, Corradina; Alejandro, Gabriela; et al.; Paramagnetic nanoparticles as potential MRI contrast agents: characterization, NMR relaxation, simulations and theory; Springer; Magnetic Resonance Materials In Physics Biology And Medicine; 25; 6; 12-2012; 467-478  
dc.identifier.issn
0968-5243  
dc.identifier.uri
http://hdl.handle.net/11336/11036  
dc.description.abstract
Object Paramagnetic nanoparticles, mainly rare earth oxides and hydroxides, have been produced these last few years for use as MRI contrast agents. They could become an interesting alternative to iron oxide particles. However, their relaxation properties are not well understood. Materials and methods Magnetometry, 1 H and 2 H NMR relaxation results at different magnetic fields and electron paramagnetic resonance are used to investigate the relaxation induced by paramagnetic particles. When combined with computer simulations of transverse relaxation, they allow an accurate description of the relaxation induced by paramagnetic particles. Results For gadolinium hydroxide particles, both T1 and T2 relaxation are due to a chemical exchange of protons between the particle surface and bulk water, called inner sphere relaxation. The inner sphere is also responsible for T1 relaxation of dysprosium, holmium, terbium and erbium containing particles. However, for these latter compounds, T2 relaxation is caused by water diffusion in the field inhomogeneities created by the magnetic particle, the outer-sphere relaxation mechanism. The different relaxation behaviors are caused by different electron relaxation times (estimated by electron paramagnetic resonance). Conclusion These findings may allow tailoring paramagnetic particles: ultrasmall gadolinium oxide and hydroxide particles for T1 contrast agents, with shapes ensuring the highest surface-to-volume ratio. All the other compounds present interesting T2 relaxation performance at high fields. These results are in agreement with computer simulations and theoretical predictions of the outer-sphere and static dephasing regime theories. The T2 efficiency would be optimum for spherical particles of 40–50 nm radius.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Nanoparticles  
dc.subject
Paramagnetic  
dc.subject
Contrast Agents  
dc.subject
Mri  
dc.subject
Relaxation  
dc.subject
Simulation  
dc.subject
Relaxation Theory  
dc.subject.classification
Física Atómica, Molecular y Química  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Otras Ciencias de la Salud  
dc.subject.classification
Ciencias de la Salud  
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD  
dc.title
Paramagnetic nanoparticles as potential MRI contrast agents: characterization, NMR relaxation, simulations and theory  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-01-06T20:01:12Z  
dc.journal.volume
25  
dc.journal.number
6  
dc.journal.pagination
467-478  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlín  
dc.description.fil
Fil: Vuong, Quoc Lam. University of Mons. Biological Physics Department; Bélgica  
dc.description.fil
Fil: Van Doorslaer, Sabine. Universiteit Antwerpen; Bélgica  
dc.description.fil
Fil: Bridot, Jean Luc. Laval University; Canadá  
dc.description.fil
Fil: Argante, Corradina. University of Mons. Biological Physics Department; Bélgica  
dc.description.fil
Fil: Alejandro, Gabriela. Universiteit Antwerpen; Bélgica. Comision Nacional de Energia Atomica. Centro Atomico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Hermann, Raphaël. Universite de Liege; Bélgica. Westfalische Wilhelms Universitat. Institut Fur Festkorpertheorie; Alemania  
dc.description.fil
Fil: Disch, Sabrina. Institut für Festkörperforschung; Alemania  
dc.description.fil
Fil: Mattea, Carlos. Universität Ilmenau. Fakultät für Mathematik und Naturwissenschaften; Alemania  
dc.description.fil
Fil: Stapf, Siegfried. Universität Ilmenau. Fakultät für Mathematik und Naturwissenschaften; Alemania  
dc.description.fil
Fil: Gossuin, Yves. University of Mons. Biological Physics Department; Bélgica  
dc.journal.title
Magnetic Resonance Materials In Physics Biology And Medicine  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs10334-012-0326-7  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/ 10.1007/s10334-012-0326-7