Artículo
Tight frame completions with prescribed norms
Fecha de publicación:
01/2008
Editorial:
Sampling Publishing
Revista:
Sampling Theory in Signal and Image Processing
ISSN:
1530-6429
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let H be a finite dimensional (real or complex) Hilbert space and let {a_i} ∞_i=1. be a non-increasing sequence of positive numbers. Given a finite sequence of vectors F = {f_i}p_i=1 in H we find necessary and sufficient conditions for the existence of r ∈ N U {∞} and a Bessel sequence G = {g_i}r_i=1 in H such that F U G is a tight frame for H and || g_i ||^2 = a_i for every i. Moreover, in this case we compute the minimum r in NU {∞} with this property. We also describe algorithms that perform completions of a given set of vectors to tight frames.
Palabras clave:
FRAME
,
TIGHT FRAME COMPLETIONS
,
MAJORIZATION
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Massey, Pedro Gustavo; Ruiz, Mariano Andres; Tight frame completions with prescribed norms; Sampling Publishing ; Sampling Theory in Signal and Image Processing; 7; 1; 1-2008; 1-13
Compartir