Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Symmetry properties for the extremals of the Sobolev trace embedding

Fernandez Bonder, JulianIcon ; Lami Dozo, Enrique JoseIcon ; Rossi, Julio DanielIcon
Fecha de publicación: 11/2004
Editorial: Gauthier-Villars/Editions Elsevier
Revista: Annales de L4institut Henri Poincare-analyse Non Lineaire
ISSN: 0294-1449
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Aplicada

Resumen

 
In this article we study symmetry properties of the extremals for the Sobolev trace embedding H1(B(0, µ)) ,→ Lq(∂B(0, µ)) with 1 ≤ q ≤2(N − 1)/(N − 2) for different values of µ. These extremals u are solutions of the problem {∆u = u in B(0, µ), ∂u_∂η = λ|u|q−2u on ∂B(0, µ). We find that, for 1 ≤ q < 2(N − 1)/(N − 2), there exists a unique normalized extremal u, which is positive and has to be radial, for µ small enough. For the critical case, q = 2(N−1)/(N−2), as a consequence of the symmetry properties for small balls, we conclude the existence of radial extremals. Finally, for 1 < q ≤ 2, we show that a radial extremal exists for every ball.
 
Dans cet article nous étudions des propriétés de symétrie des extrémales de l’immersion de Sobolev H1(B(0, µ)) →Lq (∂B(0, µ)), où 1 q 2(N − 1)/(N − 2) en fonction du rayon µ. Ces extrémales sont solutions du problème {∆= u dans B(0, µ), ∂u_∂η = λ|u| q−2u sur ∂B(0, µ). Nous trouvons que, pour 1 ≤ q < 2(N − 1)/(N − 2), il existe une extrémale normalisée unique u, qui est positive et radiale, pour µ suffisamment petite. Dans le cas critique q = 2(N − 1)/(N − 2), comme conséquence des propriétés de symétrie pour des petits rayons, nous déduisons l’existence d’extrémales. Finalement, pour 1 < q ≤ 2, nous montrons qu’une extrémale radiale existe pour toute boule.
 
Palabras clave: NONLINEAR BOUNDARY CONDITIONS , SOBOLEV TRACE EMBEDDING
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 237.0Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/110302
URL: https://www.sciencedirect.com/science/article/pii/S0294144904000198?via%3Dihub
DOI: https://doi.org/10.1016/j.anihpc.2003.09.005
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Fernandez Bonder, Julian; Lami Dozo, Enrique Jose; Rossi, Julio Daniel; Symmetry properties for the extremals of the Sobolev trace embedding; Gauthier-Villars/Editions Elsevier; Annales de L4institut Henri Poincare-analyse Non Lineaire; 21; 6; 11-2004; 795-805
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES