Mostrar el registro sencillo del ítem

dc.contributor.author
Anderson, Alejandro Luis  
dc.contributor.author
González, Alejandro Hernán  
dc.contributor.author
Ferramosca, Antonio  
dc.contributor.author
Hernandez Vargas, Esteban Abelardo  
dc.date.available
2020-07-26T15:01:58Z  
dc.date.issued
2020-06  
dc.identifier.citation
Anderson, Alejandro Luis; González, Alejandro Hernán; Ferramosca, Antonio; Hernandez Vargas, Esteban Abelardo; Discrete-time MPC for switched systems with applications to biomedical problems; Cornell University; arXiv; 6-2020; 1-22  
dc.identifier.issn
2331-8422  
dc.identifier.uri
http://hdl.handle.net/11336/110283  
dc.description.abstract
Switched systems in which the manipulated control action is the time-dependingswitching signal describe many engineering problems, mainly related to biomedical applications. In such a context, to control the system means to select an autonomous system - at each time step - among a given finite family. Even when this selection can be done by solving a Dynamic Programming (DP) problem, such a solution is often difficult to apply, and state/control constraints cannot be explicitly considered. In this work a new set-based Model Predictive Control (MPC) strategy is proposed to handle switched systems in a tractable form. The optimization problem at the core of the MPC formulation consists in an easy-to-solve mixed-integer optimization problem, whose solution is applied in a receding horizon way. Two biomedical applications are simulated to test the controller: (i) the drug schedule to attenuate the effect of viralmutation and drugs resistance on the viral load, and (ii) the drug schedule for Triple Negative breast cancer treatment. The numerical results suggest that the proposed strategy outperform the schedule for available treatments.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Cornell University  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Model Predictive Control  
dc.subject
Switched Systems  
dc.subject
Scheduling Treatment  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Discrete-time MPC for switched systems with applications to biomedical problems  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-07-20T16:18:28Z  
dc.journal.pagination
1-22  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Anderson, Alejandro Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina  
dc.description.fil
Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina  
dc.description.fil
Fil: Ferramosca, Antonio. Universidad Tecnológica Nacional; Argentina  
dc.description.fil
Fil: Hernandez Vargas, Esteban Abelardo. Frankfurt Institute For Advanced Studies-fias; Alemania  
dc.journal.title
arXiv  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/pdf/2006.12936.pdf  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2006.12936