Artículo
Symmetry and symmetry breaking for minimizers in the trace inequality
Fecha de publicación:
11/2011
Editorial:
World Scientific
Revista:
Communications In Contemporary Mathematics
ISSN:
0219-1997
e-ISSN:
1793-6683
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We consider symmetry properties of minimizers in the variational characterization of the best constant in the trace inequality C∥u∥^p_L^q(∂B_ρ) ≤∥u∥^p_W1,p(Bρ) in the ball Bρ of radius ρ. When p is fixed minimizers in this problem can be radial or nonradial depending on the parameters q and ρ. We prove that there is a global radial function u0 > 0, with u0 independent of q, such that any radial minimizer is a multiple of the restriction of u0 to Bρ. Next we prove that if either q or ρ is sufficiently large then the minimizers are nonradial. In the case when p = 2 we consider a generalization of the minimization problem and improve some of the above symmetry results. We also present some numerical results describing the exact values of q and ρ for which radial symmetry breaking occurs.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Lami Dozo, Enrique Jose; Torné, Olaf; Symmetry and symmetry breaking for minimizers in the trace inequality; World Scientific; Communications In Contemporary Mathematics; 07; 06; 11-2011; 727-746
Compartir
Altmétricas