Capítulo de Libro
Mixed-state Markov models in image motion analysis
Título del libro: Machine learning for vision-based motion analysis
Fecha de publicación:
2011
Editorial:
Springer Verlag Berlín
ISBN:
978-0-85729-056-4
Idioma:
Inglés
Clasificación temática:
Resumen
When analyzing motion observations extracted from image sequences one notes that the histogram of the velocity magnitude at each pixel shows a large probability mass at zero velocity, while the rest of the motion values may be appropriately modeled with a continuous distribution. This suggests the introduction of mixed-state random variables that have probability mass concentrated in discrete states, while they have a probability density over a continuous range of values. In the first part of the chapter, we give a comprehensive description of the theory behind mixed-state statistical models, in particular the development of mixed-state Markov models that permits to take into account spatial and temporal interaction. The presentation generalizes the case of simultaneous modeling of continuous values and any type of discrete symbolic states. For the second part, we present the application of mixed-state models to motion texture analysis. Motion textures correspond to the instantaneous apparent motion maps extracted from dynamic textures. They depict mixed-state motion values with a discrete state at zero and a Gaussian distributionfor the rest. Mixed-state Markov random fields and mixed-state Markov chains are defined and applied to motion texture recognition and tracking.
Archivos asociados
Licencia
Identificadores
Colecciones
Capítulos de libros(IAM)
Capítulos de libros de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Capítulos de libros de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Crivelli, Tomás; Bouthemy, Patrick; Cernuschi Frias, Bruno; Yao, Jian Feng; Mixed-state Markov models in image motion analysis; Springer Verlag Berlín; 2011; 77-115
Compartir