Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Predicting key educational outcomes in academic trajectories: a machine-learning approach

Musso, Mariel FernandaIcon ; Rodríguez Hernández, Carlos Felipe; Cascallar, Eduardo C.
Fecha de publicación: 03/2020
Editorial: Springer
Revista: Higher Education
ISSN: 0018-1560
e-ISSN: 1573-174X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Psicología

Resumen

Predicting and understanding different key outcomes in a student's academic trajectory such as grade point average, academic retention, and degree completion would allow targeted intervention programs in higher education. Most of the predictive models developed for those key outcomes have been based on traditional methodological approaches. However, these models assume linear relationships between variables and do not always yield accurate predictive classifications. On the other hand, the use of machine-learning approaches such as artificial neural networks has been very effective in the classification of various educational outcomes, overcoming the limitations of traditional methodological approaches. In this study, multilayer perceptron artificial neural network models, with a backpropagation algorithm, were developed to classify levels of grade point average, academic retention, and degree completion outcomes in a sample of 655 students from a private university. Findings showed a high level of accuracy for all the classifications. Among the predictors, learning strategies had the greatest contribution for the prediction of grade point average. Coping strategies were the best predictors for degree completion, and background information had the largest predictive weight for the identification of students who will drop out or not from the university programs.
Palabras clave: MACHINE LEARNING , HIGHER EDUCATION , PREDICTION , EDUCATIONAL ACHIEVEMENT
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 910.5Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/110124
URL: http://link.springer.com/10.1007/s10734-020-00520-7
DOI: https://doi.org/10.1007/s10734-020-00520-7
Colecciones
Articulos(CIIPME)
Articulos de CENTRO INTER. DE INV. EN PSICOLOGIA MATEMATICA Y EXP. "DR. HORACIO J.A RIMOLDI"
Citación
Musso, Mariel Fernanda; Rodríguez Hernández, Carlos Felipe; Cascallar, Eduardo C.; Predicting key educational outcomes in academic trajectories: a machine-learning approach; Springer; Higher Education; 3-2020
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES