Artículo
Towards an efficient liquid organic hydrogen carrier fuel cell concept
Sievi, Gabriel; Geburtig, Denise; Skeledzic, Tanja; Bösmann, Andreas; Preuster, Patrick; Brummel, Olaf; Waidhas, Fabian; Montero, María de Los Angeles
; Khanipour, Peyman; Katsounaros, Ioannis; Libuda, Jörg; Mayrhofer, Karl J. J.; Wasserscheid, Peter
Fecha de publicación:
05/2019
Editorial:
Royal Society of Chemistry
Revista:
Energy & Environmental Science
ISSN:
1754-5692
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The high temperature required for hydrogen release from Liquid Organic Hydrogen Carrier (LOHC) systems has been considered in the past as the main drawback of this otherwise highly attractive and fully infrastructure-compatible form of chemical hydrogen storage. According to the state-of-the art, the production of electrical energy from LOHC-bound hydrogen, e.g. from perhydro-dibenzyltoluene (H18DBT), requires provision of the dehydrogenation enthalpy (e.g. 65 kJ mol-1(H2) for H18-DBT) at a temperature level of 300 °C followed by purification of the released hydrogen for subsequent fuel cell operation. Here, we demonstrate that a combination of a heterogeneously catalysed transfer hydrogenation from H18-DBT to acetone and fuel cell operation with the resulting 2-propanol as a fuel, allows for an electrification of LOHC-bound hydrogen in high efficiency (> 50 %) and at surprisingly mild conditions (temperatures below 200 °C). Most importantly, our proposed new sequence does not require an external heat input as the transfer hydrogenation from H18-DBT to acetone is almost thermoneutral. In the PEMFC operation with 2-propanol, the endothermal proton release at the anode is compensated by the exothermic formation of water. Ideally the proposed sequence does not form and consume molecular H2 at any point which adds a very appealing safety feature to this way of producing electricity from LOHC-bound hydrogen, e.g. for applications on mobile platforms.
Palabras clave:
HYDROGEN
,
LIQUID ORGANIC HYDROGEN CARRIER
,
FUEL CELL
,
TRANSFER HYDROGENATION
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IQAL)
Articulos de INSTITUTO DE QUIMICA APLICADA DEL LITORAL
Articulos de INSTITUTO DE QUIMICA APLICADA DEL LITORAL
Citación
Sievi, Gabriel; Geburtig, Denise; Skeledzic, Tanja; Bösmann, Andreas; Preuster, Patrick; et al.; Towards an efficient liquid organic hydrogen carrier fuel cell concept; Royal Society of Chemistry; Energy & Environmental Science; 175; 5-2019
Compartir
Altmétricas