Artículo
A note on the uniqueness of the canonical connection of a naturally reductive space
Fecha de publicación:
12/2013
Editorial:
Springer Wien
Revista:
Monatshefete Fur Mathematik
ISSN:
0026-9255
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We extend the result in J. Reine Angew. Math. 664, 29-53, to the non-compact case. Namely, we prove that the canonical connection on a simply connected and irreducible naturally reductive space is unique, provided the space is not a sphere, a compact Lie group with a bi-invariant metric or its symmetric dual. In particular, the canonical connection is unique for the hyperbolic space when the dimension is different from three. We also prove that the canonical connection on the sphere is unique for the symmetric presentation. Finally, we compute the full isometry group (connected component) of a compact and locally irreducible naturally reductive space.
Palabras clave:
Canonical Connection
,
Reductive Space
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Olmos, Carlos Enrique; Reggiani, Silvio Nicolás; A note on the uniqueness of the canonical connection of a naturally reductive space; Springer Wien; Monatshefete Fur Mathematik; 172; 3-4; 12-2013; 379-386
Compartir
Altmétricas