Mostrar el registro sencillo del ítem

dc.contributor.author
Andruchow, Esteban  
dc.contributor.author
Recht, Lázaro  
dc.date.available
2020-07-20T20:21:16Z  
dc.date.issued
2006-04  
dc.identifier.citation
Andruchow, Esteban; Recht, Lázaro; Sectional curvature and commutation of pairs of selfadjoint operators; Theta Foundation; Journal Of Operator Theory; 55; 2; 4-2006; 225-238  
dc.identifier.issn
0379-4024  
dc.identifier.uri
http://hdl.handle.net/11336/109699  
dc.description.abstract
The space G^+ of postive invertible operators of a C*-algebra A, with the appropriate Finsler metric, behaves like a (non positively curved)symmetric space. Among the characteristic properties of such spaces, one has that two selfadjoint elements x, y ∈ A (regarded as tangent vectors at a ∈ G^+)verify that ∥x − y∥a ≤ d(exp_a(x), exp_a(y)). In this paper we investigate the ocurrence of the equality ∥x − y∥a = d(exp_a(x), exp_a(y)). If A has a trace, and the trace is used to measure tangent vectors then, as in the finite dimensional classical setting, this equality is equivalent to the fact that x and y commute. In arbitrary *-algebras, when the usual C*-norm is used, the equality is equivalent to a weaker condition. We introduce in G^+ an analogous of the sectional curvature for pairsof selfadjoint operators, and study the vanishing of this invariant.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Theta Foundation  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
POSITIVE OPERATOR  
dc.subject
SELFADJOINT OPERATOR  
dc.subject
SECTIONAL CURVATURE  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Sectional curvature and commutation of pairs of selfadjoint operators  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-04-28T16:14:04Z  
dc.identifier.eissn
1841-7744  
dc.journal.volume
55  
dc.journal.number
2  
dc.journal.pagination
225-238  
dc.journal.pais
Rumania  
dc.journal.ciudad
Bucharest  
dc.description.fil
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina  
dc.description.fil
Fil: Recht, Lázaro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina  
dc.journal.title
Journal Of Operator Theory  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.theta.ro/jot/archive/2006-055-002/2006-055-002-001.html