Mostrar el registro sencillo del ítem
dc.contributor.author
Andruchow, Esteban
dc.contributor.author
Recht, Lázaro
dc.date.available
2020-07-20T20:21:16Z
dc.date.issued
2006-04
dc.identifier.citation
Andruchow, Esteban; Recht, Lázaro; Sectional curvature and commutation of pairs of selfadjoint operators; Theta Foundation; Journal Of Operator Theory; 55; 2; 4-2006; 225-238
dc.identifier.issn
0379-4024
dc.identifier.uri
http://hdl.handle.net/11336/109699
dc.description.abstract
The space G^+ of postive invertible operators of a C*-algebra A, with the appropriate Finsler metric, behaves like a (non positively curved)symmetric space. Among the characteristic properties of such spaces, one has that two selfadjoint elements x, y ∈ A (regarded as tangent vectors at a ∈ G^+)verify that ∥x − y∥a ≤ d(exp_a(x), exp_a(y)). In this paper we investigate the ocurrence of the equality ∥x − y∥a = d(exp_a(x), exp_a(y)). If A has a trace, and the trace is used to measure tangent vectors then, as in the finite dimensional classical setting, this equality is equivalent to the fact that x and y commute. In arbitrary *-algebras, when the usual C*-norm is used, the equality is equivalent to a weaker condition. We introduce in G^+ an analogous of the sectional curvature for pairsof selfadjoint operators, and study the vanishing of this invariant.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Theta Foundation
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
POSITIVE OPERATOR
dc.subject
SELFADJOINT OPERATOR
dc.subject
SECTIONAL CURVATURE
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Sectional curvature and commutation of pairs of selfadjoint operators
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-04-28T16:14:04Z
dc.identifier.eissn
1841-7744
dc.journal.volume
55
dc.journal.number
2
dc.journal.pagination
225-238
dc.journal.pais
Rumania
dc.journal.ciudad
Bucharest
dc.description.fil
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
dc.description.fil
Fil: Recht, Lázaro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
dc.journal.title
Journal Of Operator Theory
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.theta.ro/jot/archive/2006-055-002/2006-055-002-001.html
Archivos asociados