Artículo
Differential geometry of partial isometries and partial unitaries
Fecha de publicación:
12/2004
Editorial:
University of Illinois at Urbana-Champaign
Revista:
Illinois Journal Of Mathematics
ISSN:
0019-2082
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let a be a C^*-algebra. In this paper the sets I of partial isometries and I_Δ ⊂ I of partial unitaries (i.e., partial isometries which commute with their adjoints) are studied from a differential geometric point of view. These sets are complemented submanifolds of A. Special attention is paid to geodesic curves. The space I is a homogeneous reductive space of the group U_A x U_A, where U_a denotes the unitary group of A, and geodesics are computed in a standard fashion. Here we study the problem of the existence and uniqueness of geodesics joining two given endpoints. The space I_Δ is not homogeneous, and therefore a completely different treatment is given. A principal bundle with base space I_Δ is introduced, and a natural connection in it defined. Additional data, namely certain translating maps, enable one to produce a linear connection in I_Δ, whose geodesics are characterized.
Palabras clave:
PARTIAL ISOMETRIES
,
UNITARY
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Andruchow, Esteban; Corach, Gustavo; Differential geometry of partial isometries and partial unitaries; University of Illinois at Urbana-Champaign; Illinois Journal Of Mathematics; 48; 1; 12-2004; 97-120
Compartir