Artículo
Geometry of epimorphisms and frames
Fecha de publicación:
07/2004
Editorial:
American Mathematical Society
Revista:
Proceedings of the American Mathematical Society
ISSN:
0002-9939
e-ISSN:
1088-6826
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Using a bijection between the set BH of all Bessel sequences in a (separable) Hilbert space H and the space L(ℓ2, H) of all (bounded linear) operators from ℓ2 to H, we endow the set F of all frames in H with a natural topology for which we determine the connected components of F. We show that each component is a homogeneous space of the group GL(ℓ2) of invertible operators of ℓ2. This geometrical result shows that every smooth curve in F can be lifted to a curve in GL(ℓ2): given a smooth curve γ in F such that γ(0) = ξ, there exists a smooth curve γ in GL(ℓ2) such that γ = ξ, where the dot indicates the action of GL(ℓ2) over F. We also present a similar study of the set of Riesz sequences.
Palabras clave:
FIBRE BUNDLE
,
FRAME
,
EPIMORPHISMS
,
BESSEL SEQUENCE
,
RIESZ SEQUENCE
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Corach, Gustavo; Pacheco, Miriam; Stojanoff, Demetrio; Geometry of epimorphisms and frames; American Mathematical Society; Proceedings of the American Mathematical Society; 132; 7; 7-2004; 2039-2049
Compartir