Mostrar el registro sencillo del ítem

dc.contributor.author
Iglesias, Francisco Andres  
dc.contributor.author
Feller, Alex  
dc.date.available
2020-07-07T20:59:54Z  
dc.date.issued
2019-04  
dc.identifier.citation
Iglesias, Francisco Andres; Feller, Alex; Instrumentation for solar spectropolarimetry: state of the art and prospects; International Society for Optics and Photonics; Optical Engineering; 58; 8; 4-2019; 1-22; 082417  
dc.identifier.issn
0091-3286  
dc.identifier.uri
http://hdl.handle.net/11336/109066  
dc.description.abstract
Given its unchallenged capabilities in terms of sensitivity and spatial resolution, the combination of imaging spectropolarimetry and numeric Stokes inversion represents the dominant technique currently used to remotely sense the physical properties of the solar atmosphere and, in particular, its important driving magnetic field. Solar magnetism manifests itself in a wide range of spatial, temporal, and energetic scales. The ubiquitous but relatively small and weak fields of the so-called quiet Sun are believed today to be crucial for answering many open questions in solar physics, some of which have substantial practical relevance due to the strong Sun?Earth connection. However, such fields are very challenging to detect because they require spectropolarimetric measurements with high spatial (sub-arcsec), spectral (<100  mÅ), and temporal (<10  s) resolution along with high polarimetric sensitivity (<0.1  %   of the intensity). We collect and discuss both well-established and upcoming instrumental solutions developed during the last decades to push solar observations toward the above-mentioned parameter regime. This typically involves design trade-offs due to the high dimensionality of the data and signal-to-noise-ratio considerations, among others. We focus on the main three components that form a spectropolarimeter, namely, wavelength discriminators, the devices employed to encode the incoming polarization state into intensity images (polarization modulators), and the sensor technologies used to register them. We consider the instrumental solutions introduced to perform this kind of measurements at different optical wavelengths and from various observing locations, i.e., ground-based, from the stratosphere or near space.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
International Society for Optics and Photonics  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
INSTRUMENTATION  
dc.subject
SPECTROPOLARIMETRY  
dc.subject
SOLAR MAGNETISM  
dc.subject.classification
Astronomía  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Instrumentation for solar spectropolarimetry: state of the art and prospects  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-04-24T17:59:40Z  
dc.journal.volume
58  
dc.journal.number
8  
dc.journal.pagination
1-22; 082417  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Iglesias, Francisco Andres. Universidad Tecnológica Nacional. Facultad Regional de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina  
dc.description.fil
Fil: Feller, Alex. Max Planck Institut Fur Sonnensystemforschung; Alemania  
dc.journal.title
Optical Engineering  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.spiedigitallibrary.org/journals/optical-engineering/volume-58/issue-08/082417/Instrumentation-for-solar-spectropolarimetry--state-of-the-art-and/10.1117/1.OE.58.8.082417.full  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1117/1.OE.58.8.082417