Mostrar el registro sencillo del ítem

dc.contributor.author
Aad, G.  
dc.contributor.author
Abbott, B.  
dc.contributor.author
Abdallah, J.  
dc.contributor.author
Abdel Khalek, S.  
dc.contributor.author
Abdinov, O.  
dc.contributor.author
Otero y Garzon, Gustavo Javier  
dc.contributor.author
Piegaia, Ricardo Nestor  
dc.contributor.author
Sacerdoti, Sabrina  
dc.contributor.author
Reisin, Hernan Diego  
dc.contributor.author
Romeo, Gaston Leonardo  
dc.contributor.author
Alconada Verzini, María Josefina  
dc.contributor.author
Alonso, Francisco  
dc.contributor.author
Anduaga, Xabier Sebastian  
dc.contributor.author
Dova, Maria Teresa  
dc.contributor.author
Monticelli, Fernando Gabriel  
dc.contributor.author
Zhukov, K.  
dc.contributor.author
Zibell, A.  
dc.contributor.author
Zieminska, D.  
dc.contributor.author
Zimine, N. I.  
dc.contributor.author
Zimmermann, C.  
dc.contributor.author
Zimmermann, R.  
dc.contributor.author
Zimmermann, S.  
dc.contributor.author
Zimmermann, S.  
dc.contributor.author
Ziolkowski, M.  
dc.contributor.author
Zobernig, G.  
dc.contributor.author
Zoccoli, A.  
dc.contributor.author
Nedden, M. zur  
dc.contributor.author
Zurzolo, G.  
dc.contributor.author
Zutshi, V.  
dc.contributor.author
Zwalinski, L.  
dc.contributor.author
The ATLAS Collaboration  
dc.date.available
2020-07-07T14:33:52Z  
dc.date.issued
2014-10  
dc.identifier.citation
Aad, G.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdinov, O.; et al.; A neural network clustering algorithm for the ATLAS silicon pixel detector; IOP Publishing; Journal of Instrumentation; 9; 10-2014; 1-35  
dc.identifier.issn
1748-0221  
dc.identifier.uri
http://hdl.handle.net/11336/109015  
dc.description.abstract
A novel technique to identify and split clusters created by multiple charged particles in the ATLAS pixel detector using a set of artificial neural networks is presented. Such merged clusters are a common feature of tracks originating from highly energetic objects, such as jets. Neural networks are trained using Monte Carlo samples produced with a detailed detector simulation. This technique replaces the former clustering approach based on a connected component analysis and charge interpolation. The performance of the neural network splitting technique is quantified using data from proton-proton collisions at the LHC collected by the ATLAS detector in 2011 and from Monte Carlo simulations. This technique reduces the number of clusters shared between tracks in highly energetic jets by up to a factor of three. It also provides more precise position and error estimates of the clusters in both the transverse and longitudinal impact parameter resolution.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
IOP Publishing  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ATLAS  
dc.subject
Neural networks  
dc.subject.classification
Astronomía  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A neural network clustering algorithm for the ATLAS silicon pixel detector  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-01-18T17:19:23Z  
dc.journal.volume
9  
dc.journal.pagination
1-35  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Alconada Verzini, María Josefina.  
dc.journal.title
Journal of Instrumentation  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1088/1748-0221/9/09/P09009  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1748-0221/9/09/P09009