Mostrar el registro sencillo del ítem
dc.contributor.author
Aad, G.
dc.contributor.author
Abbott, B.
dc.contributor.author
Abdallah, J.
dc.contributor.author
Abdel Khalek, S.
dc.contributor.author
Abdinov, O.
dc.contributor.author
Otero y Garzon, Gustavo Javier
dc.contributor.author
Piegaia, Ricardo Nestor
dc.contributor.author
Sacerdoti, Sabrina
dc.contributor.author
Reisin, Hernan Diego
dc.contributor.author
Romeo, Gaston Leonardo
dc.contributor.author
Alconada Verzini, María Josefina
dc.contributor.author
Alonso, Francisco
dc.contributor.author
Anduaga, Xabier Sebastian
dc.contributor.author
Dova, Maria Teresa
dc.contributor.author
Monticelli, Fernando Gabriel
dc.contributor.author
Zhukov, K.
dc.contributor.author
Zibell, A.
dc.contributor.author
Zieminska, D.
dc.contributor.author
Zimine, N. I.
dc.contributor.author
Zimmermann, C.
dc.contributor.author
Zimmermann, R.
dc.contributor.author
Zimmermann, S.
dc.contributor.author
Zimmermann, S.
dc.contributor.author
Ziolkowski, M.
dc.contributor.author
Zobernig, G.
dc.contributor.author
Zoccoli, A.
dc.contributor.author
Nedden, M. zur
dc.contributor.author
Zurzolo, G.
dc.contributor.author
Zutshi, V.
dc.contributor.author
Zwalinski, L.
dc.contributor.author
The ATLAS Collaboration
dc.date.available
2020-07-07T14:33:52Z
dc.date.issued
2014-10
dc.identifier.citation
Aad, G.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdinov, O.; et al.; A neural network clustering algorithm for the ATLAS silicon pixel detector; IOP Publishing; Journal of Instrumentation; 9; 10-2014; 1-35
dc.identifier.issn
1748-0221
dc.identifier.uri
http://hdl.handle.net/11336/109015
dc.description.abstract
A novel technique to identify and split clusters created by multiple charged particles in the ATLAS pixel detector using a set of artificial neural networks is presented. Such merged clusters are a common feature of tracks originating from highly energetic objects, such as jets. Neural networks are trained using Monte Carlo samples produced with a detailed detector simulation. This technique replaces the former clustering approach based on a connected component analysis and charge interpolation. The performance of the neural network splitting technique is quantified using data from proton-proton collisions at the LHC collected by the ATLAS detector in 2011 and from Monte Carlo simulations. This technique reduces the number of clusters shared between tracks in highly energetic jets by up to a factor of three. It also provides more precise position and error estimates of the clusters in both the transverse and longitudinal impact parameter resolution.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
IOP Publishing
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ATLAS
dc.subject
Neural networks
dc.subject.classification
Astronomía
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A neural network clustering algorithm for the ATLAS silicon pixel detector
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-01-18T17:19:23Z
dc.journal.volume
9
dc.journal.pagination
1-35
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Alconada Verzini, María Josefina.
dc.journal.title
Journal of Instrumentation
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1088/1748-0221/9/09/P09009
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1748-0221/9/09/P09009
Archivos asociados