Mostrar el registro sencillo del ítem

dc.contributor.author
Monteiro, Miguel  
dc.contributor.author
Newcombe, Virginia F J  
dc.contributor.author
Mathieu, Francois  
dc.contributor.author
Adatia, Krishma  
dc.contributor.author
Kamnitsas, Konstantinos  
dc.contributor.author
Ferrante, Enzo  
dc.contributor.author
Das, Tilak  
dc.contributor.author
Whitehouse, Daniel  
dc.contributor.author
Rueckert, Daniel  
dc.contributor.author
Menon, David K  
dc.contributor.author
Glocker, Ben  
dc.date.available
2020-07-06T16:51:17Z  
dc.date.issued
2020-05  
dc.identifier.citation
Monteiro, Miguel; Newcombe, Virginia F J; Mathieu, Francois; Adatia, Krishma; Kamnitsas, Konstantinos; et al.; Multiclass semantic segmentation and quantification of traumatic brain injury lesions on head CT using deep learning: an algorithm development and multicentre validation study; Elsevier; The Lancet Digital Health; 2; 5-2020; 1-9  
dc.identifier.issn
2589-7500  
dc.identifier.uri
http://hdl.handle.net/11336/108905  
dc.description.abstract
Background. CT is the most common imaging modality in traumatic brain injury (TBI). However, its conventional use requires expert clinical interpretation and does not provide detailed quantitative outputs, which may have prognostic importance. We aimed to use deep learning to reliably and efficiently quantify and detect different lesion types.Methods. Patients were recruited between Dec 9, 2014, and Dec 17, 2017, in 60 centres across Europe. We trained and validated an initial convolutional neural network (CNN) on expert manual segmentations (dataset 1). This CNN was used to automatically segment a new dataset of scans, which we then corrected manually (dataset 2). From this dataset, we used a subset of scans to train a final CNN for multiclass, voxel-wise segmentation of lesion types. The performance of this CNN was evaluated on a test subset. Performance was measured for lesion volume quantification, lesion progression, and lesion detection and lesion volume classification. For lesion detection, external validation was done on an independent set of 500 patients from India.Findings98 scans from one centre were included in dataset 1. Dataset 2 comprised 839 scans from 38 centres: 184 scans were used in the training subset and 655 in the test subset. Compared with manual reference, CNN-derived lesion volumes showed a mean difference of 0·86 mL (95% CI −5·23 to 6·94) for intraparenchymal haemorrhage, 1·83 mL (−12·01 to 15·66) for extra-axial haemorrhage, 2·09 mL (−9·38 to 13·56) for perilesional oedema, and 0·07 mL (−1·00 to 1·13) for intraventricular haemorrhage.InterpretationWe show the ability of a CNN to separately segment, quantify, and detect multiclass haemorrhagic lesions and perilesional oedema. These volumetric lesion estimates allow clinically relevant quantification of lesion burden and progression, with potential applications for personalised treatment strategies and clinical research in TBI.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Deep Learning  
dc.subject
Computer Tomography  
dc.subject
Traumatic Brain Injury  
dc.subject
Biomedical Image Segmentation  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Multiclass semantic segmentation and quantification of traumatic brain injury lesions on head CT using deep learning: an algorithm development and multicentre validation study  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-07-01T19:53:49Z  
dc.journal.volume
2  
dc.journal.pagination
1-9  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Monteiro, Miguel. Imperial College London; Reino Unido  
dc.description.fil
Fil: Newcombe, Virginia F J. Imperial College London; Reino Unido  
dc.description.fil
Fil: Mathieu, Francois. University of Cambridge; Reino Unido  
dc.description.fil
Fil: Adatia, Krishma. University of Cambridge; Reino Unido  
dc.description.fil
Fil: Kamnitsas, Konstantinos. Imperial College London; Reino Unido  
dc.description.fil
Fil: Ferrante, Enzo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Das, Tilak. University of Cambridge; Reino Unido  
dc.description.fil
Fil: Whitehouse, Daniel. University of Cambridge; Reino Unido  
dc.description.fil
Fil: Rueckert, Daniel. Imperial College London; Reino Unido  
dc.description.fil
Fil: Menon, David K. University of Cambridge; Estados Unidos  
dc.description.fil
Fil: Glocker, Ben. Imperial College London; Reino Unido  
dc.journal.title
The Lancet Digital Health  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2589750020300856  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/S2589-7500(20)30085-6  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.thelancet.com/journals/landig/article/PIIS2589-7500(20)30085-6/fulltext