Artículo
Deep neural architectures for highly imbalanced data in bioinformatics
Fecha de publicación:
09/2019
Editorial:
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Revista:
IEEE Transactions on Neural Networks and Learning Systems
ISSN:
2162-2388
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In the postgenome era, many problems in bioinfor-matics have arisen due to the generation of large amounts ofimbalanced data. In particular, the computational classificationof precursor microRNA (pre-miRNA) involves a high imbalancein the classes. For this task, a classifier is trained to identify RNAsequences having the highest chance of being miRNA precursors.The big issue is that well-known pre-miRNAs are usually just afew in comparison to the hundreds of thousands of candidatesequences in a genome, which results in highly imbalanceddata. This imbalance has a strong influence on most standardclassifiers and, if not properly addressed, the classifier is not ableto work properly in a real-life scenario. This work provides acomparative assessment of recent deep neural architectures fordealing with the large imbalanced data issue in the classificationof pre-miRNAs. We present and analyze recent architectures ina benchmark framework with genomes of animals and plants,with increasing imbalance ratios up to 1:2000. We also propose anew graphical way for comparing classifiers performance in thecontext of high-class imbalance. The comparative results obtainedshow that, at a very high imbalance, deep belief neural networkscan provide the best performance.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SINC(I))
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Citación
Bugnon, Leandro Ariel; Yones, Cristian Ariel; Milone, Diego Humberto; Stegmayer, Georgina; Deep neural architectures for highly imbalanced data in bioinformatics; IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC; IEEE Transactions on Neural Networks and Learning Systems; 9-2019; 1-11
Compartir
Altmétricas