Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Deep neural architectures for highly imbalanced data in bioinformatics

Bugnon, Leandro ArielIcon ; Yones, Cristian ArielIcon ; Milone, Diego HumbertoIcon ; Stegmayer, GeorginaIcon
Fecha de publicación: 09/2019
Editorial: IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Revista: IEEE Transactions on Neural Networks and Learning Systems
ISSN: 2162-2388
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

In the postgenome era, many problems in bioinfor-matics have arisen due to the generation of large amounts ofimbalanced data. In particular, the computational classificationof precursor microRNA (pre-miRNA) involves a high imbalancein the classes. For this task, a classifier is trained to identify RNAsequences having the highest chance of being miRNA precursors.The big issue is that well-known pre-miRNAs are usually just afew in comparison to the hundreds of thousands of candidatesequences in a genome, which results in highly imbalanceddata. This imbalance has a strong influence on most standardclassifiers and, if not properly addressed, the classifier is not ableto work properly in a real-life scenario. This work provides acomparative assessment of recent deep neural architectures fordealing with the large imbalanced data issue in the classificationof pre-miRNAs. We present and analyze recent architectures ina benchmark framework with genomes of animals and plants,with increasing imbalance ratios up to 1:2000. We also propose anew graphical way for comparing classifiers performance in thecontext of high-class imbalance. The comparative results obtainedshow that, at a very high imbalance, deep belief neural networkscan provide the best performance.
Palabras clave: BIOINFORMATICS , PRE-MIRNA CLASSIFICATION , DEEP NEURAL ARCHITECTURES , HIGH CLASS IMBALANCE
Ver el registro completo
 
Archivos asociados
Tamaño: 2.267Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/108896
URL: https://ieeexplore.ieee.org/document/8728181/
DOI: http://dx.doi.org/10.1109/TNNLS.2019.2914471
Colecciones
Articulos(SINC(I))
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Citación
Bugnon, Leandro Ariel; Yones, Cristian Ariel; Milone, Diego Humberto; Stegmayer, Georgina; Deep neural architectures for highly imbalanced data in bioinformatics; IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC; IEEE Transactions on Neural Networks and Learning Systems; 9-2019; 1-11
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES