Artículo
The Calderón operator and the Stieltjes transform on variable Lebesgue spaces with weights
Cruz-Uribe, David; Dalmasso, Estefanía Dafne
; Martín Reyes, Francisco Javier; Ortega Salvador, Pedro
Fecha de publicación:
11/2019
Editorial:
Universidad de Barcelona
Revista:
Collectanea Mathematica
ISSN:
0010-0757
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We characterize the weights for the Stieltjes transform and the Calder´on operator to be bounded on the weighted variable Lebesgue spaces $L_w^{p(cdot)}(0,infty)$, assuming that the exponent function $pp$ is log-H"older continuous at the origin and at infinity. We obtain a single Muckenhoupt-type condition by means of a maximal operator defined with respect to the basis of intervals ${ (0,b) : b>0}$ on $(0,infty)$. Our results extend those in cite{DMRO1} for the constant exponent $L^p$ spaces with weights. We also give two applications: the first is a weighted version of Hilbert´s inequality on variable Lebesgue spaces, and the second generalizes the results in cite{SW} for integral operators to the variable exponent setting.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Cruz-Uribe, David; Dalmasso, Estefanía Dafne; Martín Reyes, Francisco Javier; Ortega Salvador, Pedro; The Calderón operator and the Stieltjes transform on variable Lebesgue spaces with weights; Universidad de Barcelona; Collectanea Mathematica; 11-2019
Compartir
Altmétricas