Mostrar el registro sencillo del ítem

dc.contributor.author
Borgna, Juan Pablo  
dc.contributor.author
Panayotaros, Panayotis  
dc.contributor.author
Rial, Diego Fernando  
dc.contributor.author
Sánchez de la Vega, Constanza  
dc.date.available
2020-07-06T13:23:25Z  
dc.date.issued
2020-07  
dc.identifier.citation
Borgna, Juan Pablo; Panayotaros, Panayotis; Rial, Diego Fernando; Sánchez de la Vega, Constanza; Optical solitons in nematic liquid crystals: Arbitrary deviation angle model; Elsevier Science; Physica D - Nonlinear Phenomena; 408; 7-2020; 1-11  
dc.identifier.issn
0167-2789  
dc.identifier.uri
http://hdl.handle.net/11336/108859  
dc.description.abstract
We study a coupled Schrödinger-elliptic evolution system that describes the propagation of a laser beam in nematic liquid crystals. The elliptic equation describes the effects of the beam electric field on the local orientation (director field) of the nematic liquid crystal and has an important regularizing effect, seen experimentally and understood theoretically in related models. In the present work we propose a new nonlinear elliptic equation for the director field that makes no assumption on the size of the director field angle. The analysis of this elliptic equation leads to an upper bound for the size of the director angle that we believe is optimal and physically relevant, and that implies that the elastic response of the medium prevents a complete alignment between the electric field and the orientation of the liquid crystal. The results on the elliptic problem are combined with arguments from dispersive wave theory to show the local and global well-posedness of the evolution problem and the decay of small initial conditions. We also show the existence of constrained minimizers of the Hamiltonian, assuming sufficiently large optical power ($L^2$-norm of the laser field). These minimizers are solitons with radial, monotonically decreasing profiles.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
OPTICAL SOLITONS  
dc.subject
NONLINEAR SCHRÖDINGER EQUATIONS  
dc.subject
NEMATIC LIQUID CRYSTALS  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Optical solitons in nematic liquid crystals: Arbitrary deviation angle model  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-07-01T20:37:51Z  
dc.journal.volume
408  
dc.journal.pagination
1-11  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Borgna, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martin. Escuela de Ciencia y Tecnología. Centro de Matemática Aplicada; Argentina  
dc.description.fil
Fil: Panayotaros, Panayotis. Universidad Nacional Autónoma de México; México  
dc.description.fil
Fil: Rial, Diego Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Sánchez de la Vega, Constanza. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.journal.title
Physica D - Nonlinear Phenomena  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0167278919304191  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.physd.2020.132448