Artículo
Pseudomonadic BL-algebras: an algebraic approach to possibilistic BL-logic
Fecha de publicación:
02/2019
Editorial:
Springer Berlin Heidelberg
Revista:
Soft Computing
ISSN:
1432-7643
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Fuzzy possibilistic logic is an important formalism for approximate reasoning. It extends the well-known basic propositional logic BL, introduced by Hájek, by offering the ability to reason about possibility and necessity of fuzzy propositions. We consider an algebraic approach to study this logic, introducing Pseudomonadic BL-algebras. These algebras turn to be a generalization of both Pseudomonadic algebras introduced by Bezhanishvili (Math Log Q 48:624?636, 2002) and serial, Euclidean and transitive Bimodal Gödel algebras proposed by Caicedo and Rodriguez (J Log Comput 25:37?55, 2015). We present the connection between this class of algebras and possibilistic BL-frames, as a first step to solve an open problem proposed by Hájek (Metamathematics of fuzzy logic. Trends in logic, Kluwer, Dordrecht, 1998, Chap. 8, Sect. 3).
Palabras clave:
Modal algebras
,
Fuzzy Possibilistic logic
,
BL-algebras
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Busaniche, Manuela; Cordero González, Penélope; Rodriguez, Ricardo Oscar; Pseudomonadic BL-algebras: an algebraic approach to possibilistic BL-logic; Springer Berlin Heidelberg; Soft Computing; 23; 7; 2-2019; 2199-2212
Compartir
Altmétricas