Mostrar el registro sencillo del ítem
dc.contributor.author
Peterson, Victoria

dc.contributor.author
Wyser, Dominik
dc.contributor.author
Lambercy, Olivier
dc.contributor.author
Spies, Ruben Daniel

dc.contributor.author
Gassert, Roger

dc.date.available
2020-07-05T16:04:31Z
dc.date.issued
2019-02
dc.identifier.citation
Peterson, Victoria; Wyser, Dominik; Lambercy, Olivier; Spies, Ruben Daniel; Gassert, Roger; A penalized time-frequency band feature selection and classification procedure for improved motor intention decoding in multichannel EEG; IOP Publishing; Journal of Neural Engineering; 16; 1; 2-2019; 1-23
dc.identifier.issn
1741-2560
dc.identifier.uri
http://hdl.handle.net/11336/108838
dc.description.abstract
Objective. Motor imagery brain-computer interfaces (MI-BCIs) based on electroencephalography (EEG), a promising technology to provide assistance and support rehabilitation of neurological patients with sensorimotor impairments, require a reliable and adaptable subject-specific model to efficiently decode motor intention. The most popular EEG feature extraction algorithm for MI-BCIs is the common spatial patterns (CSP) method, but its performance strongly depends on the predefined frequency band and time segment length for analyzing the EEG signal. Approach. In this work, a novel method for efficiently decoding motor intention for EEG-based BCIs performing multiple frequency band analysis in multiple EEG segments is presented. This decoding algorithm uses raw multichannel EEG data which are decomposed into specific temporal and frequency bands. Features are extracted at each - band by using CSP. Feature selection and classification are simultaneously performed by means of a fast procedure, based on elastic-net regression, which allows for the inclusion of a priori discriminative information into the model. The effectiveness of the proposed method is tested off-line on two public EEG-based MI-BCI datasets and on a self-acquired dataset in two configurations: multiple temporal windows and single temporal window. Main results. The experimental results show that the proposed multiple time-frequency band method yields overall accuracy improvements of up to (average accuracy of 84.8%) as compared to the best current state-of-the-art methods based on filter bank analysis and CSP for MI detection. Also, classification variability is reduced, making the proposed method more robust to intra-subject EEG fluctuations. Significance. This paper presents a novel approach for improving motor intention detection by automatically selecting subject-specific spatio-temporal-spectral features, especially when MI has to be detected against rest condition. This technique contributes to the further advancement and application of EEG-based MI-BCIs for assistance and neurorehabilitation therapy.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
IOP Publishing

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
BRAINCOMPUTER INTERFACES
dc.subject
MIXED-NORM PENALIZATION
dc.subject
MOTOR IMAGERY
dc.subject
SPARSE FEATURE SELECTION
dc.subject
TIME-FREQUENCY BANDS
dc.subject.classification
Otras Ingeniería Médica

dc.subject.classification
Ingeniería Médica

dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS

dc.subject.classification
Ciencias de la Información y Bioinformática

dc.subject.classification
Ciencias de la Computación e Información

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
A penalized time-frequency band feature selection and classification procedure for improved motor intention decoding in multichannel EEG
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-07-01T20:07:51Z
dc.journal.volume
16
dc.journal.number
1
dc.journal.pagination
1-23
dc.journal.pais
Reino Unido

dc.journal.ciudad
Londres
dc.description.fil
Fil: Peterson, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
dc.description.fil
Fil: Wyser, Dominik. Eth Zürich;
dc.description.fil
Fil: Lambercy, Olivier. Eth Zürich;
dc.description.fil
Fil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
dc.description.fil
Fil: Gassert, Roger. Eth Zürich;
dc.journal.title
Journal of Neural Engineering

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1741-2552/aaf046/meta
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1088/1741-2552/aaf046
Archivos asociados