Mostrar el registro sencillo del ítem

dc.contributor.author
Ruiz Suarez, Sofia Helena  
dc.contributor.author
Leos Barajas, Vianey  
dc.contributor.author
Alvarez Castro, Ignacio  
dc.contributor.author
Morales, Juan Manuel  
dc.date.available
2020-07-03T19:03:31Z  
dc.date.issued
2020-02  
dc.identifier.citation
Ruiz Suarez, Sofia Helena; Leos Barajas, Vianey; Alvarez Castro, Ignacio; Morales, Juan Manuel; Using approximate Bayesian inference for a “steps and turns” continuous-time random walk observed at regular time intervals; PeerJ; PeerJ; 8; 2-2020; 1-23  
dc.identifier.uri
http://hdl.handle.net/11336/108780  
dc.description.abstract
The study of animal movement is challenging because movement is a process modulated by many factors acting at different spatial and temporal scales. In order to describe and analyse animal movement, several models have been proposed which differ primarily in the temporal conceptualization, namely continuous and discrete time formulations. Naturally, animal movement occurs in continuous time but we tend to observe it at fixed time intervals. To account for the temporal mismatch between observations and movement decisions, we used a state-space model where movement decisions (steps and turns) are made in continuous time. That is, at any time there is a non-zero probability of making a change in movement direction. The movement process is then observed at regular time intervals. As the likelihood function of this state-space model turned out to be intractable yet simulating data is straightforward, we conduct inference using different variations of Approximate Bayesian Computation (ABC). We explore the applicability of this approach as a function of the discrepancy between the temporal scale of the observations and that of the movement process in a simulation study. Simulation results suggest that the model parameters can be recovered if the observation time scale is moderately close to the average time between changes in movement direction. Good estimates were obtained when the scale of observation was up to five times that of the scale of changes in direction. We demonstrate the application of this model to a trajectory of a sheep that was reconstructed in high resolution using information from magnetometer and GPS devices. The state-space model used here allowed us to connect the scales of the observations and movement decisions in an intuitive and easy to interpret way. Our findings underscore the idea that the time scale at which animal movement decisions are made needs to be considered when designing data collection protocols. In principle, ABC methods allow to make inferences about movement processes defined in continuous time but in terms of easily interpreted steps and turns.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
PeerJ  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
ANIMAL BEHAVIOUR  
dc.subject
COMPUTATIONAL BIOLOGY  
dc.subject
MOVEMENT ECOLOGY  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Using approximate Bayesian inference for a “steps and turns” continuous-time random walk observed at regular time intervals  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-06-08T15:13:44Z  
dc.identifier.eissn
2167-8359  
dc.journal.volume
8  
dc.journal.pagination
1-23  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
San Diego  
dc.description.fil
Fil: Ruiz Suarez, Sofia Helena. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina  
dc.description.fil
Fil: Leos Barajas, Vianey. North Carolina State University; Estados Unidos  
dc.description.fil
Fil: Alvarez Castro, Ignacio. Universidad de la República; Uruguay  
dc.description.fil
Fil: Morales, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina  
dc.journal.title
PeerJ  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://peerj.com/articles/8452  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.7717/peerj.8452