Mostrar el registro sencillo del ítem

dc.contributor.author
Koch, Reinhold  
dc.contributor.author
Lopez, Eduardo  
dc.contributor.author
Divins, Núria J.  
dc.contributor.author
Allué, Miguel  
dc.contributor.author
Jossen, Andreas  
dc.contributor.author
Riera, Jordi  
dc.contributor.author
Llorca, Jordi  
dc.date.available
2015-07-07T19:17:12Z  
dc.date.issued
2013-02  
dc.identifier.citation
Koch, Reinhold; Lopez, Eduardo; Divins, Núria J.; Allué, Miguel; Jossen, Andreas; et al.; Ethanol catalytic membrane reformer for direct PEM FC feeding; Pergamon-elsevier Science Ltd; International Journal Of Hydrogen Energy; 38; 14; 2-2013; 5605-5615  
dc.identifier.issn
0360-3199  
dc.identifier.uri
http://hdl.handle.net/11336/1086  
dc.description.abstract
In this paper an ethanol reformer based on catalytic steam reforming with a catalytic honeycomb loaded with RhPd/CeO2 and palladium separation membranes with an area of 30.4 cm2 has been used to generate a pure hydrogen stream of up to 100 ml/min to feed a PEM fuel cell with an active area of 5 cm2. The fuel reformer behavior has been extensively studied under different temperature, ethanolewater flow rate and gas pressure at a fixed S/C ratio of 1.6 (molar). The hydrogen yield has been controlled by acting upon the ethanol-water fuel flow and gas pressure. A mathematical model of the ethanol reformer has been developed and an adaptive and predictive control has been implemented on a real time system to take account of its nonlinear behavior. With this control the response time of the reformer can be reduced by a factor of 7 down to 8 s. The improved dynamics of the controlled reformer match better the quickly changing hydrogen demands of fuel cells. They reached a magnitude where costly hydrogen buffers between the reformer and the fuel cell can be omitted and an electric buffer at the output of the fuel cell is sufficient.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Ethanol Steam Reforming  
dc.subject
Metal Membrane  
dc.subject
Pem Fuel Cell  
dc.subject
Sensitivity Analysis  
dc.subject
Dynamic Modeling  
dc.subject
Reformer Control  
dc.subject.classification
Ingenierías y Tecnologías  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
Ingeniería de Procesos Químicos  
dc.title
Ethanol catalytic membrane reformer for direct PEM FC feeding  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2015-06-24T20:21:18Z  
dc.journal.volume
38  
dc.journal.number
14  
dc.journal.pagination
5605-5615  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Koch, Reinhold. Universitat Technical Zu Munich;  
dc.description.fil
Fil: Lopez, Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Bahia Blanca. Planta Piloto de Ingenieria Quimica (i); Argentina;  
dc.description.fil
Fil: Divins, Núria J.. Institut de Têcniques Energetiques, Universitat Politecnica de Catalunya, España;  
dc.description.fil
Fil: Allué, Miguel. Institut de Robótica i Informática Industrial; España;  
dc.description.fil
Fil: Jossen, Andreas. Institute for Electrical Energy Storage Technology. Technische Universitat Munchen; Alemania;  
dc.description.fil
Fil: Riera, Jordi. Institut de Robótica i Informática Industrial; España;  
dc.description.fil
Fil: Llorca, Jordi. Institut de Têcniques Energetiques, Universitat Politecnica de Catalunya, España;  
dc.journal.title
International Journal Of Hydrogen Energy