Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Exploring feature extraction methods for infant mood classification

Vignolo, Leandro DanielIcon ; Albornoz, Enrique MarceloIcon ; Martínez, César Ernesto
Fecha de publicación: 07/2019
Editorial: IOS Press
Revista: AI Communications
ISSN: 0921-7126
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Computación e Información

Resumen

Speaker state recognition is an important issue to understand the human behaviour and to achieve more comprehensive speech interactive systems, and therefore has received much attention in recent years. This work addresses the automatic classification of three types of child emotions in vocalisations: neutral mood, fussing (negative mood) and crying (negative mood). Speech, in a broad sense, contains a lot of para-linguistic information that can be revealed by means of different methods for feature extraction and, in this case, these would be useful for mood detection. Here, several set of features are proposed, combined and compared with state-of-art characteristics used for speech-related tasks, and these are based on spectral information, bio-inspired ear model, auditory sparse representations with dictionaries, optimised wavelet coefficients and optimised filter bank for cepstral representation. All the experiments were performed using the Extreme Learning Machines as classifier because it is a state-of-art classifier and to achieve comparable results. The results show that by means of the proposed feature extraction methods it is possible to improve the performance provided by the baseline features. Also, different combinations of the developed feature sets were studied in order to further exploit their properties.
Palabras clave: BIO-INSPIRED EAR MODEL , CRYING DETECTION , FILTER BANK OPTIMISATION , MOOD CLASSIFICATION , SPARSE REPRESENTATIONS , SPECTRAL FEATURES , WAVELET PACKETS
Ver el registro completo
 
Archivos asociados
Tamaño: 535.5Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/108647
URL: https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/AIC-19062
DOI: http://dx.doi.org/10.3233/AIC-190620
Colecciones
Articulos(SINC(I))
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Citación
Vignolo, Leandro Daniel; Albornoz, Enrique Marcelo; Martínez, César Ernesto; Exploring feature extraction methods for infant mood classification; IOS Press; AI Communications; 32; 3; 7-2019; 191-206
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES