Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Preoperative Metabolic Signatures of Prostate Cancer Recurrence Following Radical Prostatectomy

Clendinen, Chaevien S.; Gaul, David A.; Monge, Maria EugeniaIcon ; Arnold, Rebecca S.; Edison, Arthur Scott; Petros, John A.; Fernández, Facundo M.
Fecha de publicación: 02/2019
Editorial: American Chemical Society
Revista: Journal of Proteome Research
ISSN: 1535-3893
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Química Analítica

Resumen

Technological advances in mass spectrometry 14 (MS), liquid chromatography (LC) separations, nuclear 15 magnetic resonance (NMR) spectroscopy, and big data 16 analytics have made possible studying metabolism at an 17 “omics” or systems level. Here, we applied a multiplatform 18 (NMR + LC−MS) metabolomics approach to the study of 19 preoperative metabolic alterations associated with prostate 20 cancer recurrence. Thus far, predicting which patients will 21 recur even after radical prostatectomy has not been possible. 22 Correlation analysis on metabolite abundances detected on 23 serum samples collected prior to surgery from prostate cancer 24 patients (n = 40 remission vs n = 40 recurrence) showed 25 significant alterations in a number of pathways, including 26 amino acid metabolism, purine and pyrimidine synthesis, tricarboxylic acid cycle, tryptophan catabolism, glucose, and lactate. 27 Lipidomics experiments indicated higher lipid abundances on recurrent patients for a number of classes that included 28 triglycerides, lysophosphatidylcholines, phosphatidylethanolamines, phosphatidylinositols, diglycerides, acyl carnitines, and 29 ceramides. Machine learning approaches led to the selection of a 20-metabolite panel from a single preoperative blood sample 30 that enabled prediction of recurrence with 92.6% accuracy, 94.4% sensitivity, and 91.9% specificity under cross-validation 31 conditions.
Palabras clave: PROSTATE CANCER , BIOCHEMICAL RECURRENCE , METABOLOMICS , LIPIDOMICS , LIQUID CHROMATOGRAPHY , MASS SPECTROMETRY , NUCLEAR MAGNETIC RESONANCE
Ver el registro completo
 
Archivos asociados
Tamaño: 3.990Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/108585
URL: http://pubs.acs.org/doi/10.1021/acs.jproteome.8b00926
DOI: http://dx.doi.org/10.1021/acs.jproteome.8b00926
Colecciones
Articulos(CIBION)
Articulos de CENTRO DE INVESTIGACIONES EN BIONANOCIENCIAS "ELIZABETH JARES ERIJMAN"
Citación
Clendinen, Chaevien S.; Gaul, David A.; Monge, Maria Eugenia; Arnold, Rebecca S.; Edison, Arthur Scott; et al.; Preoperative Metabolic Signatures of Prostate Cancer Recurrence Following Radical Prostatectomy; American Chemical Society; Journal of Proteome Research; 18; 3; 2-2019; 1316-1327
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES