Artículo
Strong multiplicity one theorems for locally homogeneous spaces of compact type
Fecha de publicación:
02/03/2020
Editorial:
American Mathematical Society
Revista:
Proceedings of the American Mathematical Society
ISSN:
0002-9939
e-ISSN:
1088-6826
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let G be a compact connected semisimple Lie group, let K be a closed subgroup of G, let Γ be a finite subgroup of G, and let τ be a finitedimensional representation of K. For π in the unitary dual G of G, denote by nΓ(π) its multiplicity in L2(Γ\G). We prove a strong multiplicity one theorem in the spirit of Bhagwat and Rajan, for the nΓ(π) for π in the set Gτ of irreducible τ-spherical representations of G. More precisely, for Γ and Γ finite subgroups of G, we prove that if nΓ(π) = nΓ (π) for all but finitely many π ∈ Gτ , then Γ and Γ are τ-representation equivalent, that is, nΓ(π) = nΓ (π) for all π ∈ Gτ . Moreover, when Gτ can be written as a finite union of strings of representations, we prove a finite version of the above result. For any finite subset Fτ of Gτ verifying some mild conditions, the values of the nΓ(π) for π ∈ Fτ determine the nΓ(π)’s for all π ∈ Gτ . In particular, for two finite subgroups Γ and Γ of G, if nΓ(π) = nΓ (π) for all π ∈ Fτ , then the equality holds for every π ∈ Gτ . We use algebraic methods involving generating functions and some facts from the representation theory of G.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Lauret, Emilio Agustin; Miatello, Roberto Jorge; Strong multiplicity one theorems for locally homogeneous spaces of compact type; American Mathematical Society; Proceedings of the American Mathematical Society; 148; 7; 02-3-2020; 3163-3173
Compartir
Altmétricas