Artículo
Monadic Wajsberg hoops
Fecha de publicación:
28/06/2016
Editorial:
Unión Matemática Argentina
Revista:
Revista de la Unión Matemática Argentina
ISSN:
0041-6932
e-ISSN:
1669-9637
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Wajsberg hoops are the { , →, 1}-subreducts (hoop-subreducts)
of Wajsberg algebras, which are term equivalent to MV-algebras and are the
algebraic models of Lukasiewicz infinite-valued logic. Monadic MV-algebras
were introduced by Rutledge [Ph.D. thesis, Cornell University, 1959] as an
algebraic model for the monadic predicate calculus of Lukasiewicz infinitevalued logic, in which only a single individual variable occurs. In this paper
we study the class of { , →, ∀, 1}-subreducts (monadic hoop-subreducts) of
monadic MV-algebras. We prove that this class, denoted by MWH, is an
equational class and we give the identities that define it. An algebra in MWH
is called a monadic Wajsberg hoop. We characterize the subdirectly irreducible
members in MWH and the congruences by monadic filters. We prove that
MWH is generated by its finite members. Then, we introduce the notion
of width of a monadic Wajsberg hoop and study some of the subvarieties of
monadic Wajsberg hoops of finite width k. Finally, we describe a monadic
Wajsberg hoop as a monadic maximal filter within a certain monadic MValgebra such that the quotient is the two element chain.
Palabras clave:
MONADIC MV-ALGEBRAS
,
MONADIC HOOPS-SUBREDUCTS
,
WAJSBERG HOOPS
,
SUBVARIETIES
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Díaz Varela, José Patricio; Cimadamore, Cecilia Rossana; Monadic Wajsberg hoops; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 57; 2; 28-6-2016; 63-83
Compartir