Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Adaptive Piecewise Linear Predistorters for Nonlinear Power Amplifiers With Memory

Cheong, Mei Yen; Werner, Stefan; Bruno, Marcelo JavierIcon ; Figueroa, Jose LuisIcon ; Cousseau, Juan EdmundoIcon ; Wichman, Risto Ilari
Fecha de publicación: 07/2012
Editorial: Institute of Electrical and Electronics Engineers
Revista: IEEE Transactions on Circuits and Systems I: Regular Papers
ISSN: 1549-8328
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Telecomunicaciones

Resumen

We propose novel direct and indirect learning predistorters (PDs) that employ a new baseband simplicial canonical piecewise linear (SCPWL) function. The performance of the proposed PDs is easily controlled by varying the number of segments of the SCPWL function. When comparing to polynomial-based PDs, our SCPWL-based PDs are more robust for modeling strong nonlinearities and are less sensitive to input noise. In particular, we show that noise appearing in the feedback path of an indirect learning SCPWL-PD has negligible effect on the performance while the polynomial counterpart suffers from a noise-induced coefficient bias. We consider adaptive implementations of both Hammerstein-based and memory-based SCPWL PDs; the former featuring less parameters to be identified while the latter renders more straightforward parameter identification. When deriving the PD algorithms, we avoid a separate PA identification step which allows for a true real-time, or sample-by-sample, implementation without an alternating PA and PD identification procedure. However, to arrive at efficient sample-by-sample algorithms for Hammerstein PDs we need to bypass the problem of the associated nonconvex cost function. This is done by employing a modified, linear-in-the-parameter, Wiener model whose parameters can be explicitly or implicitly used for both indirect and direct learning. Extensive simulations confirm that the proposed SCPWL PDs outperform their polynomial counterparts, especially when noise is present in the feedback path of the indirect learning structure. The same is also verified by circuit level simulations on the Freescale MRF6S23100H class-AB PA in an 802.16d WiMAX system.
Palabras clave: ADAPTIVE PREDISTORTER , DIGITAL PREDISTORTER , DIRECT LEARNING
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 3.435Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/108235
URL: https://ieeexplore.ieee.org/document/6134691
DOI: http://dx.doi.org/10.1109/TCSI.2011.2177007
Colecciones
Articulos(IIIE)
Articulos de INST.DE INVEST.EN ING.ELECTRICA "A.DESAGES"
Citación
Cheong, Mei Yen; Werner, Stefan; Bruno, Marcelo Javier; Figueroa, Jose Luis; Cousseau, Juan Edmundo; et al.; Adaptive Piecewise Linear Predistorters for Nonlinear Power Amplifiers With Memory; Institute of Electrical and Electronics Engineers; IEEE Transactions on Circuits and Systems I: Regular Papers; 59; 7; 7-2012; 1519-1532
Compartir
Altmétricas
 

Items relacionados

Mostrando titulos relacionados por título, autor y tema.

  • Artículo An efficient CS-CPWL Based Predistorter
    Bruno, Marcelo Javier ; Cousseau, Juan Edmundo ; Werner, Stefan; Figueroa, Jose Luis ; Cheong, Mei Yen; Wichman, R. (Spolecnost Pro Radioelektronicke Inzenyrstvi, 2009-06)
Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES