Artículo
The Poincaré half-space of a C∗-algebra
Fecha de publicación:
08/2019
Editorial:
Universidad Autónoma de Madrid
Revista:
Revista Matematica Iberoamericana
ISSN:
0213-2230
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let A be a unital C*-algebra. Given a faithful representation A⊂B(L) in a Hilbert space L, the set G^+⊂A of positive invertible elements can be thought of as the set of inner products in L, related to A, which are equivalent to the original inner product. The set G^+ has a rich geometry, it is a homogeneous space of the invertible group G of A, with an invariant Finsler metric. In the present paper we study the tangent bundle TG^+ of G^+, as a homogenous Finsler space of a natural group of invertible matrices in M_2(A), identifying TG^+ with the it Poincaré half-space H of A. H={H ∈ A : Im(h)≥ 0,Im(h) invertible}. We show that H≃TG^+ has properties similar to those of a space of non-positive constant curvature.
Palabras clave:
POSITIVE INVERTIBLE OPERATOR
,
INNER PRODUCT
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Andruchow, Esteban; Corach, Gustavo; Recht, Lázaro; The Poincaré half-space of a C∗-algebra; Universidad Autónoma de Madrid; Revista Matematica Iberoamericana; 35; 7; 8-2019; 2187-2219
Compartir
Altmétricas